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ABSTRACT
As attacks on Industrial Control Systems (ICS) are increasing, the
design and deployment of ICS honeypots is gaining momentum
as a way to prevent, detect, and research them. However, ICS hon-
eypot creators hardly explicitly consider what adversary behavior
they want to capture, potentially creating honeypots that may
not completely fulfill their intended purpose. At the same time,
ICS honeypots are classified using the traditional interaction level
scheme which is unsuitable for ICS due to its unique properties. In
turn, these issues make it hard for potential users to systematically
determine the suitability of an ICS honeypot for their use case.
To tackle these problems, in this paper we introduce ICSvertase,
a novel framework allowing for structural reasoning about ICS
honeypots. ICSvertase integrates several existing components from
the ATT&CK for ICS and Engage frameworks provided by MITRE
and extends them with novel elements. ICSvertase provides a novel
approach to helping companies and users in several real-world use
cases, such as choosing the most suitable existing ICS honeypot,
designing new ICS honeypots, and classifying existing ones in a
more fine-grained way. To show ICSvertase’s benefits, we provide
examples for these real-world use cases and compare them to their
traditional counterparts.

CCS CONCEPTS
• General and reference → Design; • Computer systems or-
ganization→ Special purpose systems; Embedded systems; • Net-
works→ Network security.

KEYWORDS
ICS Honeypot Selection, Classification Scheme, Cyber-Attack, De-
ceiving Technology, Active Defense

ARES 2023, August 29-September 1, 2023, Benevento, Italy
© 2023 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in The 18th International
Conference on Availability, Reliability and Security (ARES 2023), August 29-September 1,
2023, Benevento, Italy, https://doi.org/10.1145/3600160.3605020.

ACM Reference Format:
Stash Kempinski, Shuaib Ichaarine, Savio Sciancalepore, and Emmanuele
Zambon. 2023. ICSvertase: A Framework for Purpose-based Design and
Classification of ICS Honeypots. In The 18th International Conference on
Availability, Reliability and Security (ARES 2023), August 29-September 1,
2023, Benevento, Italy. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3600160.3605020

1 INTRODUCTION
Using intentionally vulnerable systems, i.e., honeypots, in tradi-
tional IT deployments is a well-known method for gathering Cyber
Threat Intelligence (CTI) or detecting adversaries in a network [24].
Honeypots are traditionally deployed to serve one of two main
functionalities. The former is to support attack analysis. So-called
research honeypots [9] are usually intentionally Internet-facing,
provide (possibly weakened) IT services, and contain elaborate log-
ging functionalities to capture adversarial behavior. The latter is
to support intrusion detection. So-called production honeypots [9],
usually consist of decoy hosts that provide alerting functionalities
when meaningful interactions occur. Given that no legitimate in-
teractions with these decoys should take place, they likely indicate
an adversary being active on the network.

With attacks on Industrial Control Systems (ICS) becoming more
prevalent [17], research on ICS honeypots is gaining momentum
and progressing rapidly. It started with simple systems displaying
static web pages of ICS devices [5] and evolved to more complex
ones incorporating (simulated) physical processes to increase their
credibility [3]. However, ICS honeypot creators hardly (in a struc-
tural fashion) consider what adversary behavior they want to cap-
ture. In some cases, this results in honeypots being created without
(completely) fulfilling their intended purpose (see Sec. 5.1), or being
overly complex for their purpose.

The reason that ICS honeypot creators do not (structurally) con-
sider adversary behavior can be attributed to a lack of methods
for structural reasoning about ICS honeypot requirements in gen-
eral. When trying to design and/or classify ICS honeypots, this
problem manifests itself in three ways. First, when creating an ICS
honeypot, one cannot systematically determine the minimum re-
quired features to achieve the purpose of the honeypot. Second,
the primary honeypot classification method is the interaction level
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scheme, which classifies honeypots based on complexity rather
than features. This classification scheme also does not consider the
physical and heterogeneous nature of ICS environments, which
make traditional honeypot deployment techniques, such as em-
ulation, non-trivial. To make things worse, the definition of the
specific interaction levels differ significantly in literature. For in-
stance, Guarnizo et al. define high-interaction honeypots as systems
that do “not emulate any services, functionalities, or base operating
systems" [10], whereas Antonioli et al. define them as “real services
running on real Operating Systems (...) or simulate the services
and the relevant parts of an Operating System" [1]. Third, to the
best of our knowledge, there is no way to systematically determine
the suitability of an existing (ICS) honeypot for a given use case.
Consequently, interested parties cannot structurally establish what
features an existing honeypot possesses and if these features match
those required to achieve their intended purpose.

In this paper, we present ICSvertase, a framework named after the
enzyme “invertase” which bees use to convert the complex sugar in
nectar into the more simple ones that form honey. ICSvertase allows
users to systematically address the aforementioned problems by (i)
determining the minimum required features of an ICS honeypot for
a specific use case; (ii) classifying (existing) ICS honeypots using
a structured, fine-grained, and purpose-based approach; and, (iii)
assisting and easing the task of choosing between existing ICS
honeypots for a specific use case. In other words, our framework
systematically answers the following key questions when creating
and/or using an ICS honeypot: (i) what adversary behavior should
a honeypot capture; (ii) how can a honeypot capture this adversary
behavior; (iii) why would one want to capture such behavior; (iv)
how to convince an adversary to perform such behavior; and (v)
which existing honeypot is most suitable for a given deployment.

To do so, ICSvertase incorporates existing components of MITRE
ATT&CK® for ICS and MITRE Engage™[18, 19], extends them to
be more suitable in ICS and honeypot context, and introduces new
concepts, such as a set of functional requirements for ICS honey-
pots and methods to determine them. To the best of our knowledge,
no papers before used the components cited above in the ICS hon-
eypot research domain. Note that ICSvertase specifically considers
only ICS honeypots, due to their remarkable differences with IT
honeypots, such as the need for modeling physical processes and
the non-triviality of creating honeypots for ICS-specific services.

The paper is structured as follows. Sec. 2 reviews related work;
Sec. 3 describes in detail MITRE’s used components and the differ-
ences between IT and ICS honeypots; Sec. 4 presents ICSvertase, its
building blocks and use cases; Sec. 5 provides examples of how to
use ICSvertase and shows its improvement on the interaction level
classification scheme and, finally, Sec. 6 tightens the conclusions.

2 RELATEDWORK
Our work is not the first to propose solutions for the problems pre-
sented in the introduction. For instance, whenever a research paper
introduces a new ICS honeypot, it uses a scheme to compare itself
to existing literature [1, 4, 15, 25–27]. Such comparisons mostly
follow a scheme that determines if the compared honeypots imple-
ment or possess a set of features in a “yes” or “no” (or comparable)
fashion, possibly including an additional “partial” option. However,

the features used for comparison differ vastly per paper. Moreover,
they are seemingly chosen in such a way that highlights the nov-
elty of the presented honeypot. They range from specific technical
details, e.g, how complete an implementation is with regards to a
specific asset, to general characteristics, e.g., if the project is still
maintained or flexibility in configuration. As an example, consider
the honeypots in HoneyPLC [15], HoneyVP [27], and the one pro-
posed by Antonioli et al. [1]. HoneyPLC [15] includes a comparison
based on technical features, e.g., TCP/IP stack simulation and ability
to capture ladder logic (a commonly used programming language
in industrial assets). HoneyVP [27] uses comparable features, but
(among others) excludes the capturing of ladder logic (HoneyPLC’s
novelty) and includes R&D- and hardware-related costs (HoneyVP’s
novelty). Antonioli et al. [1] take a completely different compari-
son approach, using the interaction level of honeypots, if they are
actively maintained, and their networking capabilities. ICSvertase
proposes an independent method, which compares ICS honeypots
primarily based on their purpose, rather than their features. We
made this choice as different purposes naturally lead to a varying
set of requirements and, in turn, features.

ICSvertase also introduces a new classification scheme, even
though such schemes and taxonomies for (ICS) honeypots already
exist [8, 9]. These contributions describe honeypots more generally,
but also more broadly, than the previously discussed comparison
schemes, which make them less suitable for fine-grained or feature-
specific comparisons. However, their broader nature allows them
to provide a more complete overview of feature categories. The
differences in both types of schemes can clearly be seen in the
taxonomy provided by Fan et al. [8], which includes both deploy-
ment considerations and methodologies that allow a honeypot to
recognize, capture, or prevent attacks. This taxonomy identifies and
groups feature categories, such as how to profile attacks (e.g., ob-
taining the tools an adversary uses), but does not describe specific
methods to do so (e.g., capturing ladder logic). As the taxonomy pro-
vided by Fan et al. is intended for IT honeypots, they only mention
ICS as a honeypot theme, while not providing related challenges
and consideration. Franco et al. [9] provide a classification scheme
that does include ICS-specific considerations, which they use for
specifically surveying cyber-physical related honeypots (such as
Internet of Things (IoT) and ICS). As a result, the relevant differ-
ences between the latter taxonomy and the one by Fan et al. lie in
the consideration of ICS-unique properties, such as the inclusion
of cyber-physical processes (e.g., through simulation). Note that
Franco et al. also introduce a purpose classification, for which they
use “research” and “production” as defined in the introduction of
this paper. Both these classification schemes are broader than the
scheme presented in this paper, as they consider more properties
than just the purpose of an (ICS) honeypot. However, as ICSvertase
proposes a purpose-based classification scheme for ICS honeypots,
it is vastly more in-depth. In other words, ICSvertase can be seen as
an intermediate approach between the existing classification and
feature comparison schemes: it is detailed enough to make feature-
specific comparisons, while being complete enough to classify ICS
honeypots. Finally, we remark that ICSvertase goes further than
only proposing a new classification scheme for ICS honeypots, it
also proposes a way to design them based on this scheme. To sum
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up, ICSvertase not only allows its users to classify existing ICS hon-
eypots, but also to design new ones based on their desired purpose.
To the best of our knowledge, ICSvertase is the first framework that
provides this two-way functionality for ICS honeypots.

3 BACKGROUND
As the differences between IT and ICS honeypots are significant
enough to require their own research areas, we provide more in-
sights into these differences in Sec. 3.1. Furthermore, our work
uses components from two knowledge bases provided by MITRE:
ATT&CK for ICS and Engage. We describe these components in
Sec. 3.2 and Sec. 3.3, respectively.

3.1 IT vs ICS Honeypots
There are multiple key differences between IT- and ICS environ-
ments that introduce unique challenges when designing and de-
ploying ICS honeypots. Cyber-Physical Systems (CPSs) (digital pro-
cesses interacting with physical environments) are at the core of
ICS environments, and their assets are more diverse than those in IT
environments. A prime example of such assets are Programmable
Logic Controllers (PLCs), multipurpose devices whose primary
functionality is to interact with the real world based on their in-
puts (such as sensor readings) in a deterministic fashion. While IT
assets run on commonly used Operating Systems (OSs) (e.g, Linux),
the time-constrained nature of ICS assets usually require them
to run on (predominantly) vendor-specific Real Time Operating
Systems (RTOSs), i.e., specialized OSs that can guarantee time con-
straints. Similar considerations apply also for CPU architectures.
IT systems use a generalized set of architectures (x86, ARM, etc),
easily identifiable if desired (e.g., by looking up the CPU model),
whereas for ICS assets this information is rarely publicly available.

As the services running on the mentioned assets are built specif-
ically for their respective OS and CPU architecture, deploying a
honeypot for such assets would require the same combination to
ensure that said services run on the honeypot’s hardware. Thus,
we have mainly three options: (i) emulating the OS and/or CPU
architecture, (ii) virtualizing the services intended to act as the
honeypot, or (iii) using a real asset. The generalized usage of OSs
and CPU architectures in the IT domain make emulation in most
cases redundant as virtualization-capable components are widely
(and relatively cheaply) available. The same holds for using real
assets, as they can easily be repurposed by simply installing the
desired OS and services. However, in the ICS domain none of the
options are trivial. First, the emulation of embedded systems has
been well researched by Zaddach et al. [28], who created an emula-
tion method for embedded firmware and thoroughly discussed the
challenges of real-time emulation. The heterogeneity of ICS assets
and identified challenges make emulation either time-consuming
or even non-feasible for ICS honeypots. Second, virtualization re-
quires knowing the specific CPU architecture of the ICS asset and
having a virtualization-capable CPU. None of the options are realis-
tic, due to the unavailability of information and the hard feasibility
of acquiring such a CPU (if they even exist). Last, ICS components
can be significantly more costly than IT components. This is not
necessarily an issue when creating a single honeypot incorporating

a specific component. However, any changes involving said compo-
nent, such as implementing an equivalent service from a different
vendor, would likely imply the purchase of a new component.

A common work-around is to simulate the services of the respec-
tive asset. This approach is also common in IT honeypots, which
only partly implement or imitate a service to take away some degree
of freedom from the adversary (e.g, not giving full access to an asset
over SSH). However, IT services predominantly use standardized
protocols, whereas ICS often use proprietary ones, with no publicly
available documentation. Thus, when creating an ICS honeypot,
it might be required to first reverse-engineer the protocol(s) that
the related services use. Note that there are exceptions, as both
generalized ICS- and proprietary IT protocols exist.

Lastly, the implementation of a (seemingly) live environment
can result in more convincing honeypots in both domains. The
specific needs depend on the environment and services imitated by
a honeypot; however, they usually consist of either (fake) human
interactions or interactions between the respective processes. For
example, a database that is being regularly modified or a tank hold-
ing varying amounts of water during the day both indicate that they
are being actively used. In IT environments, these interactions and
corresponding outcomes are processed as fast as possible (unless
explicitly designed not to do so or if human actions are required);
hence, for a IT honeypot to be convincing, its interactions should
be processed at the same speed. However, for an ICS honeypot
to provide the same level of realism, the physics involved in its
environment also need to be considered. This extra consideration
is necessary, as skilled adversaries would notice if a compromised
system provides unrealistic interactions, e.g., a water tank empty-
ing completely in milliseconds. As a result, ICS honeypots should
implement some sort of (simulated) physical process, as it can play
an essential part for its convincibility. All these considerations
contribute to making the ICS honeypot domain unique.

3.2 ATT&CK for ICS
The ATT&CK for ICS knowledge base provides an overview of
categorized adversary behavior and where this behavior can be
detected [18]. This categorization consists of two sets: tactics and
techniques. Tactics describe what an adversary wants to achieve at
a certain step in their attack. Techniques describe broadly how an
adversary can perform a certain tactic. For example, initial access
(tactic) can be obtained through external remote services (technique).

To identify where this behavior could be detected, MITRE also
provides two sets structured in the same way: data sources and data
components. Data sources describe concrete information sources
that, when configured and monitored correctly, can show indica-
tions of adversary behavior. Data components describe the specific
part of a data source providing such indications. For example, an
adversary performing exploitation of remote services can be seen in
the network traffic (data source), when looking at the network traffic
content (data component), if known payloads are used.

3.3 Engage
The Engage knowledge base provides an overview of interaction
methods usable by defenders to reveal, influence, and learn about
adversary behavior [19]. Engage’s categorization consists of three
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sets: goals, approaches, and activities. Goals describe the overall in-
tentions, i.e., to reveal, influence, or learn about the adversary. Ap-
proaches describe the intended outcome of these intentions. Lastly,
activities describe the specific methods to steer an adversary to-
wards this outcome. For example, if a defender’s intention is to
affect (goal) adversaries to direct (approach) towards a honeypot,
they could use introduced vulnerabilities (activity) to attract them.

Next to these sets, Engage provides a mapping between the tech-
niques from the non-ICS ATT&CK framework and its activities,
which can be used to determine what activities are able to capture,
and thus interact with, certain adversary behavior. To create this
mapping, Engage uses a set of adversary vulnerabilities that de-
scribe what an adversary is susceptible to when showing certain
behavior, and mapped them to their relevant activities. For example,
an adversary vulnerability is that when adversaries collect data,
they are susceptible to collecting fake data. In turn, this adversary
vulnerability can be used to create the following mapping: when
an adversary uses automated collection, the data that they collect
can be influenced through information manipulation.

The mapping process consists of checking per technique which
adversary vulnerabilities are applicable, then check for each related
activity if it is relevant for the technique in question. This process
creates a set of {technique, adversary vulnerability, activity} pairs
that are then reduced to unique {technique, activity} pairs. We lever-
age this same approach for mapping the techniques of ATT&CK for
ICS to Engage’s activities in Sec. 4.3.

4 ICSVERTASE
ICSvertase provides a structural way for designing and classifying
ICS honeypots based on their purpose. To this aim, ICSvertase uses
the following components (and their respective mappings) from
MITRE’s knowledge bases: Engage’s approaches and activities and
ATT&CK for ICS’ techniques and data components. Specifically,
ICSvertase uses the approaches and techniques to answer the “what"
and “why" of an ICS honeypot’s purpose, while it uses the activities
and data components to answer the “hows" of an ICS honeypot 1.

Next to using MITRE’s components, we introduce two new com-
ponents to answer the questions posed in the introduction. They
represent the functional characteristics and other considerations
of an ICS honeypot, which we name functional features and non-
functional considerations. Together with the data components they
form the possible design requirements of an ICS honeypot. To sys-
tematically determine its specific set of design requirements we also
introduce two new mappings. The first, named Engage Adjusted for
ICS, bidirectionally maps Engage’s activities to ATT&CK for ICS’
techniques. We created this mapping specifically for ICSvertase as,
at the time of writing, MITRE does not provide one themselves.
The second new mapping, named feature requirements, provides
the functionality to determine the functional features of an ICS hon-
eypot using the previously mentioned components. Together, these
new and existing components and mappings make up the building
blocks of ICSvertase. Fig. 1 shows a schematic representation of
how these building blocks are used in each of its use cases.

1Note that, as these knowledge bases are updated periodically, ICSvertase uses the first
version of Engage and version 12 of ATT&CK for ICS.

The rest of this section describes each building block of ICSver-
tase. Specifically, Sec. 4.1 introduces the functional features, Sec.4.2
describes the non-functional considerations, Sec. 4.3 details how we
adjusted Engage for our work, Sec. 4.4 provides the mapping be-
tween techniques and activities, and finally, Sec. 4.5 describes in
more detail how all the building blocks work together.

4.1 Functional Features
ICSvertase defines a set of four technical feature categories that
must be considered when designing (and implementing) an ICS
honeypot. We extracted these features from both ICS- and IT honey-
pots, and their relevant literature, which either implicitly consider
or explicitly discuss them. These features were then filtered based
on their relevance to adversary interactions, e.g., alerting and data
visualisation are excluded. Note that ICSvertase does not consider
such features explicitly, but they are abstracted to approaches (in
these two specific cases to expose) during the design process. We
define the following functionality-related features, named func-
tional features: size, ICS component, physical process, and logging.
Each functional feature consists of multiple options that describe its
implementation details, e.g., the need for single or multiple network
entities (see the size feature). Note that some options are divided
once more in sub-options when they require more granularity, in
this case we refer to them as primary and secondary options re-
spectively. In the following, we use the notation feature:{options}
to denote the combination of a given feature and (set of) option(s),
where the denoted options are always from the most granular set.
Fig. 2 shows the functional features and their options.

4.1.1 Size. This feature describes the honeypot’s network-accessible
assets. It represents the amount of assets the honeypot (seemingly)
consists of from a network perspective (not on the number of phys-
ical machines, as multiple virtual hosts can be running on a single
physical machine). ICSvertase distinguishes two self-explanatory
options: single, and multiple. Note that we intentionally avoid the
term “honeynet”, as this is also the name of the honeypot created
by Cisco [21]. This feature is most relevant for more complex hon-
eypots, e.g., the ones intending to capture lateral movement. For
example, the honeypot created by Antonioli et al. consists of a VPN
endpoint, gateway, and two PLCs [1].

4.1.2 ICS component. This feature describes how a honeypot can
integrate ICS-specific component(s). To provide a fine-grained way
to reason about possible implementations, ICSvertase distinguishes
two primary options: real device and imitation.

The real device primary option has no secondary options and
indicates that a real device is used as (part of) the honeypot. An
example of a honeypot using a real device is HoneyVP [27], which
combines a virtual component and a real PLC that handles requests
that the virtual component is unable to process.

The imitation primary option includes five secondary options,
describing features of a real device that can be imitated to some
extent: protocol, runtime, OS, bootloader, and system. Depending
on a honeypot’s purpose, multiple options can be implemented
simultaneously and at different levels of realism. For instance, one
can use a basic web interface (protocol) with amore elaborate service
implementation (runtime) to increase the honeypot’s believability.
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Figure 1: High-level architecture and steps for each of ICSvertase’s use cases.
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Figure 2: The defined functional features, including their
primary and secondary options.

The protocol secondary option describes a honeypot adhering
to a protocol specification in a static manner. This option consists
at most of a finite state machine to trick an adversary into think-
ing that there is some form of dynamic interaction possible. An
example of such a honeypot is S7commTrace [26], which imple-
ments Siemens’ S7Comm protocol with static responses, i.e., valid
requests to change the process status or the PLC configuration are
not reflected in further communication.

The runtime secondary option describes a dynamic processwhose
execution can be influenced by, or observed through, adversarial
interaction. In the context of ICS this means that, for instance, an
adversary can create new program blocks or make adjustments to
existing programs or parameters that are handled in a stateful way
by the honeypot. Note that this option is not limited to influenc-
ing control logic, if the imitated ICS component is for example an
Human Machine Interface (HMI), the runtime can be a VNC server
(a remote desktop service commonly used in industrial settings)
that shows the state of a physical process. An example of such a
honeypot is Mimepot [3], which implements a water distribution
system simulation whose operational parameters can be influenced
via its Modbus/TCP server.

The OS secondary option describes the implementation of an
OS capable of process execution. Note that this option usually

includes the need for a complete file system to convince adversaries
that they are interacting with a real OS, rather than an imitation.
In practice, this option always requires the use of some sort of
firmware emulation or virtualization. To the best of our knowledge,
there are no ICS honeypots implementing this option.

The bootloader secondary option describes the possibility to up-
date and execute a new firmware image on the imitated device. A
honeypot implementing this option would, e.g., be able to capture
the malicious firmware uploaded to the serial-to-Ethernet convert-
ers in the 2015 Ukrainian power grid attack, which prevented oper-
ators to remotely enable the electrical substations disabled during
the attack [14]. To the best of our knowledge, there are no ICS
honeypots implementing this option.

The system secondary option describes the imitation of a real
device’s hardware properties, such as memory layout/size and CPU
architecture. Other properties include the (number of) I/O ports
and serial communication interfaces, and being able to physically
disable its programming mode. Indeed, a complete system imitation
would be indistinguishable from a real ICS asset from a network
perspective. Note that this option goes beyond acting as a real de-
vice by giving desirable responses to fingerprinting queries (which
would be categorized under the protocol option). To the best of our
knowledge, there are no ICS honeypots implementing this option.

4.1.3 Physical Process. This feature describes the awareness of the
physical process(es) underlying the (imitated) ICS environment.
ICSvertase distinguishes three options: none, model, and real pro-
cess. The none option is added for completeness and describes a
honeypot that does not implement any form of physical process. A
honeypot without physical process awareness would either provide
static answers to read requests, not respond in a meaningful way
to command messages, or it would not adhere to physics when
determining variable changes.

The model option describes the use of a model to simulate a
physical process. This option does not differentiate between simple
or complex models, but its implementation should add a meaningful
layer of believability to the honeypot. An example of such a honey-
pot is Mimepot [3], which uses a mathematical model to determine
the state of a simulated water distribution system.

Finally, the real process option describes the implementation of
a real physical process. Note that this also implies the usage of a
real ICS asset. To the best of our knowledge, the only example of
a honeypot implementing this option is the one created by Hilt et
al. [11], containing a mixture of simulated and real processes.
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4.1.4 Logging. This feature describes how a honeypot records ad-
versary activities. Although this feature does not affect the believ-
ability of a honeypot, it is essential to determine to what extent
adversary behavior can be captured. ICSvertase distinguishes two
primary options for this feature: network-based, and host-based
logging. The network-based logging option indicates capturing ad-
versarial actions observable from the network hosting the honeypot.
It includes two secondary options: packet capture and RSSI. The
packet capture secondary option is straightforward and often seen
in honeypots. The RSSI option (referring to the logging of received
signal strength of wireless messages) is, to the best of our knowl-
edge, not present in any ICS honeypot currently available, but only
in IT [23]. However, given that several known ICS attacks are using
wireless protocols [12], this option can provide valuable insights
into the physical location of an adversary.

The host-based logging option consists of logging activities not
derivable from the network communication between the honey-
pot and the adversary. It contains three secondary options: screen
recording, file system, and processes. The screen recording secondary
option defines the recording of an ICS device’s visual input/output.
This option is only relevant to honeypots capable of such output,
e.g., HMIs. As adversary interaction with these devices can provide
valuable insights into their behavior, its logging must be consid-
ered. An example of such a honeypot is the one of Hilt et al. [11],
which starts recording the workstation’s screen when detecting
significant visual changes.

The file system secondary option defines the logging of actions
related to file creation, deletion, and modification. Capturing such
actions and their outcomes gives insights into both the adversary
objectives when interacting with files (e.g., deleting crucial files)
and the interaction steps (e.g., changing parameters in configuration
files). An example of such a honeypot is HoneyPLC [15], which
captures control logic uploaded via the S7comm protocol.

The processes secondary option defines the capability of a honey-
pot to log actions related to process start, stop, and interactions with
the OS. Logging such actions allows honeypots to identify activities
such as adversaries’ reconnaissance, e.g., starting system-native
network discovery processes, or detecting how malware interacts
with a system, by hooking OS API functions. To the best of our
knowledge, there are no ICS honeypots implementing this option.

4.2 Non-Functional Considerations
Next to the functional features described in the previous section,
there are several considerations regarding ICS honeypots that im-
pact their design but do not directly relate to their functionality.
These considerations remain from the extraction process (see pre-
vious section) and we call these non-functional considerations. Non-
functional considerations are explicitly described here as they can
vastly influence the effectiveness of a deployed honeypot. Note that
these considerations are not identified through any of ICSvertase’s
mappings, but must be considered by the users themselves.

4.2.1 External Persuasion. Methods other than just the honeypot
itself can be used to lure adversaries or to increase the believability
of a honeypot. These methods can takemany forms. For instance, by
setting up a website and creating social media profiles of employees,
it is possible to trick adversaries into thinking a honeypot is real and

belonging to an actual organization, as done by Hilt et al. [11]. Other
methods in this category include posting information regarding the
honeypot on hacker forums and other mediums commonly used
by attackers to look for vulnerable devices, as done e.g., by Sasaki
et al. in [22].

4.2.2 Hosting Location. The hosting location of an ICS honeypot
can vastly influence its credibility. Hence, a convincing location
is crucial for its purpose both from an external (Internet) and in-
ternal network perspective. For instance, whereas it is normal for
IT services to be hosted at Cloud providers, experienced attackers
would realize that it is unlikely for an ICS. The same holds for
all publicly-identifiable IP addresses, such as those of universities.
This consideration is important for both Internet-facing honeypots
and for honeypots whose purpose is to detect adversaries on the
internal network. For example, the deeper honeypots are placed
inside a network, the less likely it is for adversaries to stumble upon
them, potentially impacting their effectiveness.

4.2.3 Deployment Period. The (planned) deployment duration of a
honeypot must also be considered. We include this consideration
as it is usually not guaranteed that any adversarial interaction is
captured, even if the honeypot is deployed for a long time. This
is even more true for ICS honeypots as “the lifecycle of a sophis-
ticated ICS attack is often measured in years” [16]. Depending on
other features and considerations, e.g., if its deployment location
has a monthly fee, this consideration can significantly impact the
feasibility of a honeypot project.

4.3 Engage Adjusted for ICS
To tailor Engage to our needs, we created a mapping from ATT&CK
for ICS’ techniques to Engage’s activities. This mapping follows
nearly the same methodology used by MITRE for the mapping be-
tween ATT&CK and Engage (see Sec. 3). Compared to the reference
methodology, we removed the email-related adversary vulnerability,
due to its (low) relevance for ICS honeypots. Note that we consider
malicious email attachments to be malware, which is considered
through other elements of Engage. The mapping can be found on
the reference ICSvertase GitHub page at [2].

Next to the adjustment in the mapping methodology, we made
two minor adjustments to the Engage matrix itself to better fit it to
the purpose of ICSvertase. First, we removed Email Manipulation
from the set of activities for the aforementioned reason. Second,
we added the Network Analysis and Network Monitoring activities
to the other’s original approaches, as both activities apply to the
Collect and Detect approaches, depending on the details of their
implementation. For instance, Network Monitoring relates, among
others, to identifying anomalous traffic patterns. The identification
of such patterns can be used both as threat intelligence (Collect)
and to identify adversaries within a network (Detect). The adjusted
matrix is shown in Fig. 3.

To increase the suitability of Engage in the context of ICS hon-
eypots, we extend the definitions of the Reassure and Motivate
approaches. Reassure is extended to convincing adversaries that
they are interacting with an actual physical process, while Moti-
vate is extended to convincing adversaries that they are interacting
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with a legitimate system. A practical example is the difference be-
tween the classification of Mimepot and HoneyPLC. HoneyPLC
does not support physical interaction but imitates a commercially
available device (Siemens PLC), motivate-ing an adversary to try
Siemens-specific vulnerabilities. On the other hand, Mimepot does
do simulation, but over a "brandless" Modbus/TCP device, reas-
sure-ing an adversary that they are interacting with a real physical
process. Note that, grammatically, the names of these approaches
are interchangeable; hence, it is important to consider them using
their Engage definitions.

Lastly, we explicitly decided not to add any new ICS-specific
activities to the adjusted matrix as the existing activities can be in-
terpreted in such a way that they fully consider the physical part of
ICS. For instance, the activity Information Manipulation “is used to
support the engagement narrative and directly impact adversary ac-
tivities” [19]. This activity can be used, possibly jointly with Pocket
Litter and Peripheral Management, to indicate implementation of
physical processes in ICS honeypots, e.g., through simulation.

Expose
Collect

API Monitoring

System Activity
Monitoring

Software
Manipulation

Detect

Network 
Monitoring

Network
Analysis

Introduced
Vulnerabilities

Lures

Malware
Detonation
Network
Analysis
Network
Monitoring

Prevent Direct Disrupt Reassure Motivate
Affect Ellict

Baseline Attack Vector
Migration

Isolation

LuresHardware
Manipulation

Isolation

Network
Manipulation
Security
Controls

Email
Manipulation
Introduced
Vulnerabilities

Lures

Malware
Detonation
Network
Manipulation
Peripheral
Management
Security
Controls
Software
Manipulation

Network
Manipulation
Software
Manipulation

Application
Diversity

Application
Diversity

Artifact
Diversity

Artifact
Diversity

Burn-In Information
Manipulation
Malware
Detonation
Network
Diversity

Personas

Email
Manipulation
Information
Manipulation
Network
Diversity
Peripheral
Management

Pocket Litter

Figure 3: The adjusted Engagematrix for ICS. Changed activi-
ties are in italics, those underlined are added to the respective
approaches and those crossed out are removed.

4.4 Feature Requirements
This section describes themapping of techniques and activities to the
functional features used by ICSvertase to systematically determine
the feature requirements of an ICS honeypot, together with the
decisions and assumptions made during its creation.

Our mapping contains a set of minimum required features to
capture a given technique while, at the same time, not allowing an
adversary to realize that they are interactingwith a honeypot. Given
the nature of techniques, it is hard to reason about all the possible
capture methods; hence, we map a lower bound. For instance, a
honeypot capturing automated collection does not necessarily need
logging capabilities if it aims to detect collection attempts; however,
it might require file system logging if it aims to detect what is
being collected. Therefore, if required for its purpose, a honeypot
might need to implement more (advanced) features than only those
provided by this mapping. However, implementing less (advanced)
features would indicate a honeypot unable to completely fulfill its
purpose. Hence, through this mapping, users are made aware of
the lower bound, ensuring that the honeypot can fulfill its purpose.

The mapping relies on two logging-based assumptions. First, log-
ging options are only mapped to the Collect and Detect activities, as
only these activities relate to capturing adversary behavior. Second,
when an activity is mapped to the ICS component protocol option,
we assume that the relevant logging is implemented in the imitating
scripts, due to the triviality of such an operation. From runtime
onward, we assume this logging is not necessarily present due to its
implementation not being trivial (e.g., when using device-specific
firmware), and thus relevant activities are mapped. For example,
packet capture is not necessary with protocol implementation scripts
as these will read packet contents anyways and can log the relevant
data. An exception to this assumption occurs when the honeypot
consists of multiple network-connected components, or the tech-
nique in question requires by definition communication between
assets (and the honeypot possibly being only one of those assets).

Furthermore, we made two physical process-related assumptions.
First, we mapped physical process options only to the Reassure and
Motivate activities, as only these activities relate to convincing ad-
versaries that they are in a legitimate environment. Second, we
mapped to physical process options only techniques of the follow-
ing tactics: Collection, Inhibit Response Function and Impair Process
Control, as only they are relevant to process control.

Finally, we mapped no techniques from the Impact tactic as these
techniques describe outcomes of adversary actions rather than being
actions themselves. In other words, if the purpose of a honeypot
is to capture Impact techniques, the honeypot can achieve such
objective by capturing the techniques that lead to the impact.

For the sake of presentation, Tab. 1 only shows a snippet of
the resulting matrix, the complete matrix can be found on the
ICSvertase GitHub page [2]. Note that, in the matrix, we omitted
the none secondary option from the physical process options as
it is implicit for activities not requiring this feature. The matrix
reads as follows: each row contains a technique and its relevant
activities, and these activities are placed in the column that defines
their minimum implementation requirement.

4.5 Use Cases
In this section we describe how users can employ ICSvertase to
address each of its motivating use cases. We provide an example
for each use case in Sec. 5.

4.5.1 Designing an ICS Honeypot. As shown in Fig. 1 via straight
arrows, this use case consists of four steps and starts by identifying
the purpose of the honeypot, through two parallel tasks. The first
task requires users to identify the techniques that make up the adver-
sary behavior they want to capture. The second task requires users
to identify the approaches that make up what they want to do with
the captured behavior and how/if they would like to convince the
adversary to perform this behavior. Then, ICSvertase uses the iden-
tified techniques and Engage Adjusted for ICS to form a preliminary
set of activities. The user should match these with the identified ap-
proaches and filter those they want to use in their honeypot. Third,
ICSvertase uses the identified techniques and activity set to form the
minimum feature set, through the feature requirement matrix. This
is done by identifying the columns referenced by the activities for
each technique. Last, ICSvertase provides the honeypot (minimum)
design requirements, by combining: (i) relevant data components of
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Table 1: Snippet from the feature requirements matrix.

Size CPS integration
Technique Single Multiple Protocols Runtime OS Bootloader System

Detect Operating Mode All API Monitoring, Informa-
tion Manipulation, Lures

Software Manipulation, System Activity
Monitoring

Hardware Manipulation,
Security Controls

Device Restart/Shutdown All API Monitoring Introduced Vulnerabilities, Security Con-
trols, Software Manipulation, System Ac-
tivity Monitoring

Malware Detona-
tion

the identified techniques, whose mapping is provided by MITRE;
(ii) identified feature set; and (iii) non-functional considerations.

4.5.2 Classifying an Existing ICS Honeypot. As shown in Fig. 1 via
dashed arrows, this use case consists of three steps and starts with
the user identifying the techniques a honeypot captures. Optionally
and/or as a coherence check, users can confirm the set of identified
techniques by checking if the relevant data components are imple-
mented. Then, ICSvertase uses the identified techniques and the
Engage Adjusted for ICS mapping to form a set of activities possibly
used by the honeypot in question. The user should filter this set
of activities to those actually being used, through the activities’
definitions. Last, the user should use this filtered set of activities to
determine the honeypot approaches, which form the ICS honeypot
classification. An possible future benefit of this use case is that, if
both existing and future ICS honeypots would be classified using
this scheme, users could more quickly determine the suitability of
an ICS honeypot by means of the next use case.

4.5.3 Choosing Between Existing ICS Honeypots. As shown in Fig. 1
via dotted arrows, this use case consists of three steps. It relies
on ICSvertase’s classification to be performed first, and for users
to have decided on a purpose for their honeypot. First, the user
should decidewhich approachesmatch the specific use case, filtering
existing ICS honeypots based on the approaches they support. Then,
the user should filter the activities of the matched ICS honeypots to
further narrow down their suitability. Last, the user should compare
the techniques of the remaining ICS honeypots to determine which
of them serves their purpose best.

Note that it might be hard to find a honeypot that perfectly
matches this purpose. However, each step systematically identi-
fies honeypot(s) closer to the user’s intended purpose by making
them explicitly consider what features they are (and are not) look-
ing for, constituting the most suitable starting point(s) for further
development or customization.

5 ICSVERTASE USE CASE EXAMPLES
In this section we showcase ICSvertase to address the use-cases
described in Sec. 4.5.

5.1 Designing a New Honeypot
To show the advantages of our framework for honeypot design, we
reason on the design of the honeypot CryPLH [5] using ICSvertase.
The authors of CryPLH state that their goal is to “develop a high-
interaction honeypot which appears identical to the real device
from an attacker’s point of view" and its purpose is that it “needs
to be able to log all the actions an attacker takes, while trying to
exploit the PLC". This goal and purpose matches the motivate and

collect approaches, respectively. CryPLH’s authors use a Siemens
Simatic S7-300 PLC as reference device, and mimic it as much as
possible using four different methods. First, CryPLH scrapes the
ethernet-accessible protocols (HTTP(S), SNMP, S7comm) provided
by this PLC and uses the collected data to craft static replays that
are sent at (adversary) request; all of the honeypot responses are
static, except for a small set of SNMP messages which include some
form of state awareness. Second, CryPLH uses a HTTPS certifi-
cate identical to the self-signed certificate of the PLC. Third, where
necessary and possible on the simulated system, CryPLH is config-
ured to match the PLC’s properties, such as its non-standard MTU
size. Lastly, when receiving any applicable authentication-request
commands, CryPLH returns an “incorrect password”-error. In other
words, using MITRE’s terminology, the authors of CryPLH create
a honeypot that appears identical to the real device by deceiving
adversaries that use remote system information discovery through
its information manipulation and application diversity activities.
Furthermore, they implement a logging system that captures the
honeypot’s network traffic (network analysis) and is deployed as an
internet accessible device. As no interaction is possible beyond unau-
thenticated information requests and stateless network messages,
no exploitation techniques (e.g., exploit public-facing application)
are identified, as adversaries cannot execute these successfully.

By using ICSvertase, we notice a design gap when reasoning
about the required techniques and activities. Namely, during ICSver-
tase’s first parallel task, we explicitly identify techniques related to
the various ways of exploiting a PLC. Tab. 2 (second row) shows
a small but (for this example) sufficient set of techniques match-
ing CryPLH’s intended purpose. In turn, during step two of the
design process, we identify the activities from the collect approach
needed to serve CryPLH’s intended purpose. Tab. 2 compares the
techniques and activities required to support the cited objective to
those implemented. We notice that the difference is significant: 4
activities and at least 3 techniques are missing in [5]. Note that we
omit non-functional considerations from Tab. 2 as CryPLH’s authors
were knowingly limited in their options, and such limitations are
likely the case for most researchers.

The missing techniques and activities show that CryPLH at least
partially fails in “being able to log all actions an attacker takes
while trying to exploit the PLC”, as the authors primarily focused
on making it appear “identical to the real device from an attacker’s
point of view”. Indeed, while for some of ICSvertase’s newly iden-
tified techniques and activities it can be argued that their absence
does not necessarily mean that CryPLH does not fulfill its purpose,
their complete absence does. Namely, neither of the two techniques
capturable by CryPLH relate to exploiting a PLC.
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Table 2: Comparison between CryPLH’s original implementation in [5] and ICSvertase suggested implementation.

Step 1 Step 2 Step 3
Impl. Approaches Techniques Activities Functional Features Data Components

CryPLH Collect
Motivate

Internet Accessible Device
Remote System Information Discovery

Network Analysis
Information Manipulation
Application Diversity

Size:single
ICS component:protocol
Physical process:none
Logging:packet capture

Software
Network Traffic

ICSvertase Collect
Motivate

Internet Accessible Device
Remote System Information Discovery
Brute Force I/O
Execution Through API
Modify Controller Tasking
. . .

Network Analysis
Information Manipulation
Application Diversity
API Monitoring
System Activity Monitoring
Artifact Diversity
Malware Detonation

Size:single
ICS component:OS
Physical process:none
Logging:{file system, processes,
packet capture}

Software
Network Traffic
Application Log
Logon Session
Network Traffic
OS API Execution
. . .

5.2 Classification of Existing Honeypots
ICSvertase can also be used to classify existing ICS honeypots based
on their purpose, better differentiating existing solutions than the
traditional interaction level scheme. Tab. 3 shows the classification
obtained using ICSvertase aside to the self-assessed interaction level
of the reported solutions, taken from the related papers. The out-
comes of each step taken to perform each classification can be found
in Tab. 4. We also considered, but not included, the following honey-
pots due to a lack of confirmable or mappable information: Pliatsios
et al.[20], Krasznay et al.[13], Dodson et al.[7], and Dipot[6].

An example highlighting the problem with classifying ICS hon-
eypots purely based on their interaction level can be observed when
comparing the honeypot of Antonioli et al. [1] and S7CommTrace [26]
(Tab. 3). The authors self-classified their honeypots as being high
interaction. Based on this, one could think the two solutions to be
comparable. However, ICSvertase shows a clear difference, not only
in the approaches they serve, but also in the supported activities
(one overlap) and techniques (no overlap) (Tab. 4).

Another example highlighting inconsistencies with interaction-
level-based classification emerges when comparing HoneyPLC [15]
and CryPLH [5]. The respective authors (self) determined different
interaction levels for their honeypots (medium for the former and
high for the latter). Based on this, one could think the two solutions
to be more different than, e.g., the two considered in the previous
example. However, applying ICSvertase for classification we see
they support the same approaches: they both collect information
and motivate the adversary to target the honeypot by providing
some sort of realism. Note that the interaction level’s complexity
indication is not lost in ICSvertase’s classification. It also shows
the difference in their complexity when observing their mapped
activities, which is part of the classification process (see Tab. 4).

Classifying honeypots by means of ICSvertase allows us to com-
pare ICS honeypots by considering both their intended purpose
and to a certain extent their complexity, but in a more natural (and
objective) way than the interaction-level approach.

5.3 Choosing an Existing Honeypot
Consider a CTI organization that would like to collect PLC mal-
ware samples by creating a convincing honeypot that motivates
adversaries in deploying their malicious code. To prevent potential
double work, the organization would like to investigate existing
honeypots to see if they are sufficient for the organization’s purpose
or need to be extended.

Table 3: ICS honeypots’ author-classified interaction level vs
ICSvertase’s classification.

Honeypot Interaction level Approaches

HoneyPLC[15] Medium Collect, motivate
SIPHONa [10] High Collect, detect, prevent, reassure
Antonioli et al.[1] High Collect, reassure, motivate
HosTaGe [25] Low Collect, detect
Mimepot [3] - Detect, direct, reassure
LOGistICS [4] Medium Detect, direct, motivate
HoneyVP [27] High Detect, motivate
CryPLH [5] High Collect, motivate
S7CommTrace [26] High Collect

aSIPHON’s example implementation is used here for its classification.

The organization uses the two approaches previously identified
as a starting point for its investigation. Using the classification
provided by ICSvertase, the organization identifies three viable
options: HoneyPLC [15], CryPLH [5], and Antonioli et al. [1].

Using ICSvertase’s existing mapping, the organization can nar-
row down the options further by looking at their mapped techniques
and activities, which can be found in Tab. 4. Activities matching the
organization’s purpose are API monitoring, software manipulation,
system activity monitoring, application diversity, and information
manipulation. Moreover, suitable techniques to capture malware
samples are: modify program and download program.

These activities and techniques match the most with those sup-
ported by HoneyPLC. Although this match is not perfect, Honey-
PLC can serve as starting point for the CTI organization.

We highlight that, according to the reference paper in [15] and
to the traditional classification approach, HoneyPLC is a medium
interaction honeypot. Contrasting the common sense that would
suggest that high is better than medium, the available high interac-
tion honeypots do not fit the requirements as tightly as themedium
interaction honeypot. Thus, ICSvertase not only provides a sys-
tematic way of addressing honeypot selection, but might also help
reducing costs (assuming a high interaction honeypot is more ex-
pensive than a medium interaction honeypot to acquire).

6 CONCLUSION
In this paper, we presented ICSvertase, a framework for purpose-
based design and classification of ICS honeypots. Our framework
addresses the lack of methods to structurally reason about ICS hon-
eypots. It uses components and mappings from MITRE’s ATT&CK
for ICS and Engage knowledge bases in combination with newly



ARES 2023, August 29-September 1, 2023, Benevento, Italy Kempinski et al.

Table 4: ICS honeypots classification step outcomes.

Honeypot Identified techniques Activities Approaches

HoneyPLC Modify Program, Program Download, Internet Accessible Device, Graphical User Interface, Point & Tag
Identification, I/O Image

API Monitoring, Software Manipulation, Application Diver-
sity

Collect, Motivate

SIPHON Valid Accounts, Internet Accessible Device, Graphical User Interface Lures, Security Controls, Network Analysis, Network Moni-
toring, Peripheral Management, System Activity Monitoring

Collect, Detect,
Prevent, Reassure

Antonioli
et al.

Adversary-in-the-Middle, Block CommandMessage, Block Reporting Message, Brute Force I/O, Command-
Line Interface, External Remote Services, Monitor Process State, Network Connection Enumeration,
Network Sniffing, Point & Tag Identification, Remote System Discovery

Information Manipulation, Network Analysis, Network Mon-
itoring, Security Controls, Network Diversity, Lures, Applica-
tion Diversity, System Activity Monitoring

Collect, Reassure,
Motivate

HosTaGe Lateral Tool Transfer, Remote Services, Remote System Discovery, Remote System Information Discovery API Monitoring, Network Analysis, Lures Collect, Detect
Mimepot Adversary-in-the-Middle, Block Command Message, Block Reporting Message, Spoof Reporting Message,

Unauthorized Command Message, Remote System Discovery, Network Connection Enumeration
Attack Vector Migration, Information Manipulation, Network
Monitoring, API Monitoring, Peripheral Management, Lures

Detect, Direct, Re-
assure

LOGistICS Dervice Restart/Shutdown, I/O Image, Internet Accessible Device, Monitor Process State, Service Stop,
Unauthorized Command Message

Introduced Vulnerabilities, Security Controls, Network Anal-
ysis, Application Diversity

Detect, Direct, Mo-
tivate

HoneyVP Automated Collection, Brute Force I/O, Detect OperatingMode, Execution through API, I/O Image, Internet
Accessible Device, Modify Alarm Settings, Modify Controller Tasking, Modify Parameter, Modify Program,
Monitor Process State, Program Download, Service Stop, System Firmware, Unauthorized Command
Message

Network Analysis, Application Diversity, Artifact Diversity Detect, Motivate

CryPLH Internet Accessible Device, Remote System Information Discovery Network Analysis, Information Manipulation, Application
Diversity

Collect, Motivate

S7commTrace Execution through API, Internet Accessible Device API Monitoring, Network Monitoring Collect

introduced ones, such as the extension of Engage to ICS. Using
these building blocks, ICSvertase provides a novel approach to ad-
dress several design and classification use cases. To demonstrate
ICSvertase’s capabilities, we have used it to derive the design require-
ments of an existing honeypot and compared these to its original
design, showing crucial gaps in the original design that could have
been identified using ICSvertase. In addition, we have shown that
ICSvertase can be used as a purpose-based classification scheme for
ICS honeypots, replacing and improving the traditional interaction
level-based approach. We showed that this new classification still
allows to differentiate honeypots based on their complexity, but
using a more informative feature set. By focusing on the purpose(s),
ICSvertase also eases the selection of existing honeypots.

We plan to use ICSvertase in our ongoing efforts of creating new
ICS honeypots, as well as extending the classification of existing ICS
honeypots using our scheme to commercial honeypots, not evalu-
ated here due to the lack of public information. We also envisage
the possible extension of ICSvertase to IT honeypots.
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