
Model-Based Mitigation of Availability Risks
Emmanuele Zambon∗, Damiano Bolzoni∗, Sandro Etalle∗ and Marco Salvato†

∗University of Twente
Email: {emmanuele.zambon, damiano.bolzoni, sandro.etalle} (at) utwente.nl

†KPMG Italia S.p.a.
Email: msalvato (at) kpmg.it

Abstract—The assessment and mitigation of risks related to
the availability of the IT infrastructure is becoming increasingly
important in modern organizations. Unfortunately, present stan-
dards for Risk Assessment and Mitigation show limitations when
evaluating and mitigating availability risks. This is due to the fact
that they do not fully consider the dependencies between the
constituents of an IT infrastructure that are paramount in large
enterprises. These dependencies make the technical problem of
assessing availability issues very challenging. In this paper we
define a method and a tool for carrying out a Risk Mitigation
activity which allows us to assess the global impact of a set of
risks and to choose the best set of countermeasures to cope with
them. To this end, the presence of a tool is necessary, due to
the high complexity of the assessment problem. Our approach
can be integrated in present Risk Management methodologies
(e.g. COBIT) to provide a more precise Risk Mitigation activity.
We substantiate the viability of this approach by showing that
most of the input required by the tool is available as part of
a standard business continuity plan, and/or by performing a
common tool-assisted Risk Management.

I. INTRODUCTION

Information Risk Management is the process of assessing
the risks an organization’s IT infrastructure is exposed to, and
of developing strategies to manage them. The process of Risk
Management is usually divided into two main steps: Risk As-
sessment (RA) and Risk Mitigation (RM). The former activity
identifies potential harmful threats to the information systems,
while the latter consists of developing and implementing a
strategy to manage them. Nowadays, Risk Management is
often a primary task in enterprise organizations and it is
widely considered a key factor for improving an organization’s
IT performance. Moreover, recent legislations, such as the
Sarbanes-Oxley Act (SOX) of 2002 or the international accord
known as Basel II [5] (International Convergence of Capital
Measurement and Capital Standards), explicitly requires this
kind of activity to be conducted to ensure stakeholders that
the organization is operating properly.

Among the three main security properties of information,
Confidentiality, Integrity and Availability (CIA), the impor-
tance of availability has grown enormously: today, organiza-
tions strongly depend on the availability of their information
systems; moreover, availability of IT-related services is contin-
uously growing in importance for enterprise revenues (on-line

This work has been accomplished during the third author’s stay at the
University of Trento, Italy, supported by the Serenity project. The first author
is supported by the research project PROSECCO. The second author is
supported by the research program Sentinels (www.sentinels.nl).

banking, reservations for e-tickets etc.). This fact is confirmed
by the increasing importance that Service Level Agreements
(SLAs) are gaining. Currently, SLAs are considered one of
the fundamental ways to define and control the expected
availability and quality of a given service and are widely used
not only between different organizations but also between units
of the same company.

That managing availability risks is particularly important is
confirmed by the fact that most Risk Management method-
ologies specifically require, when the mitigation phase takes
place, the implementation of a plan for Business Continuity
(Business Continuity Plan, BCP). A BCP describes which
are the countermeasures that have been chosen, the people
involved and the response procedures they should take in case
of a disruption event, to guarantee a timely recovery.

Contribution In this paper we focus on assessing and
mitigating the risks related to the availability of the IT in-
frastructure. This is particularly challenging because of the
(temporal) dependencies linking the various constituents of
an IT infrastructure (machines, processes, assets, etc.) with
each other. In complex information systems, a failure in a
remote component may propagate across the infrastructure and
eventually affect the availability of a good deal of the entire
system. Failing to appropriately assess the consequences of
such propagations will result in inaccurate RA and RMs.

We argue that current Risk Management methodologies (e.g.
COBIT, ISO 17799 [18], ISO 13335 [17] or OCTAVE [26])
show limitations when evaluating and mitigating availability
risks. This is due to the fact that they do not fully consider
the consequences of the functional dependencies between the
constituents of an IT infrastructure: the consideration of these
dependencies is mostly left to the judgement of the assessor
carrying out the RA phase (although this is not made explicit
clearly). Thus, these methodologies can only be useful to
identify and fix individual risks an organization is exposed to
(see also Section II). On the other hand, these dependencies
are considered in more specific assessment methods such
as the Business Continuity Plans, like in the new standard
BS25999 [16] (see Section II for a detailed overview). These
methods, however, do not specify how to use this information
for RM.

Summarizing, nowadays the process of assessing and mit-
igating availability related risks depends very much on the
human expertise, making Risk Management more an art than



a science.
Our thesis is that it is possible to carry out an accurate

tool-based RM by using the data collected during RA and
BCP activities. To substantiate this thesis, in this paper we
present a framework and a tool for the assessment and
mitigation of availability-related IT risks. The framework is
based on the Time-Dependency (TD) model, an extension of
the model of the IT infrastructure as it is done according to
the BS25999 (which largely coincides with the data collected
by the KARISMA tool developed at KPMG for RA, see
Section V). This model allows us to determine how incidents
will propagate across the organization, and therefore what is
the actual impact of incidents. With this information, we can
carry out an optimization study by comparing the true expected
benefit determined by the different countermeasures that can
be put in place to cope with the various risks.

As we will mention, the computational complexity of the
problems posed by our method, make it impossible to carry out
the underlying analysis by hand, and this is why the method
we propose requires the presence of an appropriate tool. We
have implemented the tool using UPPAAL CORA [21] and
Prolog.

We consider our solution a concrete enhancement to RM
methodologies, providing automatic support to better evaluate
the IT relationships and dynamics.

II. PRESENT METHODOLOGIES FOR RISK MANAGEMENT

There exists a number of standards and methodologies
for Risk Management, among which COBIT (Control Ob-
jectives for Information and related Technology) [11] and
BS25999 [16] are of particular relevance to our work. COBIT
is the de facto standard for information control and IT Risk
Management, addressing IT governance and control practices.
It provides a reference framework for managers, users and
security auditors. COBIT is mostly based on the concept
of control (be it technical or organizational) which is used
to assess, monitor and verify the current state of a certain
process (that may refer to procedures, human resources, etc.)
involved in the information system. To implement COBIT, the
organization must benchmark its own processes against the
control objectives suggested by the framework, using the so-
called maturity models (derived from the Software Engineering
Institute’s Capability Maturity Model [27]). Maturity models
basically provide: (1) a measure expressing the present state
of an organization, (2) an efficient way to decide which
is the goal to achieve and, finally, (3) a tool to evaluate
progress toward the goal. Maturity modelling enables gaps in
capabilities to be identified and demonstrated to management.
Key Goal Indicators (KGI) and Key Performance Indicators
(KPI) are then used to measure, respectively, when a process
has achieved the goal set by management and when a goal is
likely to be reached or not. Since COBIT does not suggest any
technical solution but only organizational solutions, organiza-
tions combine COBIT and ISO 17799, applying the controls
suggested in the part Code of Practice for Information Security
Management of the standard.

Although COBIT does not provide any practical solution
for mitigating the risks, it requires the organization to im-
plement a Business Continuity Plan (BCP) to realize and
improve the availability of an information system and its core
processes. Until recently, no methodology was available to
conduct in a precise way this activity although it is of primary
importance when running a complex information system. The
new standard for managing business continuity BS25999 [16]
is mainly focused on providing guidelines to understand,
develop and implement a BCP, and aims to provide a stan-
dard methodology. This standard requires the organization to
complete different steps when preparing the BCP: (1) identify
the activities/processes which carry the core service used by
the organization, (2) identify the relationships/dependencies
among themselves, (3) evaluate the impact of the disruption
of the core services/processes previously identified (Business
Impact Analysis, BIA). The most critical activities/processes
are intended to be the ones whose direct/indirect monetary loss
is significantly high.

When the risk has been assessed and evaluated, one has to
identify the best countermeasures to reduce the risk. Typically,
there exists a number of different solutions (technical or
organisational) from which business and IT managers must
choose the best one(s) meeting the required security level
given the available budget (or finding the best compromise
between the cost of the countermeasures and the benefit they
provide). As we mentioned before, current methodologies are
not sufficiently taking into account how business processes are
linked together and the way a single incident could propagate
and affect the whole organization’s information system. The
fact that COBIT and ISO 17799 do not consider dependencies
between processes has even greater impact in the mitigation
phase of availability risks: it is standard practice to protect
the processes whose availability has a greater direct impact
on the organization goals, while a more accurate analysis in
many cases reveals that it is more cost effective to protect
some of the processes that have an indirect impact as well.

III. MODELLING ORGANIZATIONS AND INCIDENTS

The framework we propose is based on the TD model, a
model of the organization’s IT-related architecture (including
a part related to the organization’s business goals), and a repre-
sentation of the possible incidents. To simplify the exposition,
we indicate by R+ the set of positive real numbers, and we
use the following sets to indicate domains: T is the set of
all time intervals (expressed in hours), Eur is the domain of
monetary values (expressed in Euro).

Assumptions We start by providing a brief summary of the
data we need to build the model, later we describe this data in
more detail. (1) A Time-Dependency (TD) model, consisting
of: a set of entities (processes, applications, etc.) and a set
of relationships between these entities. Relationships model
which entities depend on other entities and must contain an
estimate of how long an entity would be able to survive if
another entity it depends on becomes unavailable. We express



this measure in hours. (2) The cost associated to the downtime
of those processes directly affecting the business objective of
the organization (indirect relationships are taken care of by the
model). We express this measure in Euro per hour. (3) A list
of possible incidents affecting the IT infrastructure, together
with a conservative estimate of the average downtime each of
them cause (per entity), given the controls already in place.
We also need an estimate of their expected frequency. For
the sake of uniformity, in the sequel we express the downtime
caused by each incident in hours and their estimated frequency
in times per year. (4) A list of countermeasures. For each
countermeasure we need an estimate of (a) their deployment
and maintenance costs (expressed in Euro per year), (b) the
effect is has on the estimated frequency of the incidents and/or
on the downtime they cause.
In Section V we address the problem of how and when this
data can be collected during the RA and BCP processes.

TD model The basic elements of the model are the
constituents of the IT infrastructure. We follow notable archi-
tecture frameworks such as TOGAF [29], Zachman [30] and
ArchiMate [3] as well as IT Governance solutions (IBM [12]
and ISACA [11]), to determine those elements which may
directly or indirectly be involved in an incident: Processes,
Applications and Information, Technology and Infrastructure
or Facilities. Processes describe critical processes necessary
to carry out the business, like manage orders or invoicing.
Applications and Information are objects related to the soft-
ware necessary to enable business operations e.g. produc-
tion control applications, customer relationship management
(CRM) applications or critical databases. Technology refers to
systems, networks and industry-specific technology needed to
enable applications and data, and Infrastructure or Facilities
are physical locations necessary to house service technologies.

Running example - Part 1: We present here an example
(intentionally oversimplified) of the business/IT infrastructure
of a small bank segment with ten entities (see Table I):

TABLE I
LIST OF ENTITIES IN A SIMPLE ENTERPRISE ORGANIZATION’S SEGMENT.

Id Description
p1 Customer management process
p2 Financial services process
a1 Home banking application
a2 On-line trading application
a3 Financial founds management application
db1 Checking account database
db2 Trading database
m1 Application server machine
m2 Oracle machine
m3 Oracle machine
n1 Network segment

p1 and p2 represent two business processes; a1, a2 and a3 are
three applications supporting business processes while db1 and
db2 are two databases accessed by applications. Finally, m1,
m2 and m3 are the three machines running applications and
n1 is the network segment connecting the three machines.

We represent a TD model using a graph, where nodes
represent the basic entities and labelled edges between nodes

represent their relationships. The presence of an edge from
node a to node b indicates that b depends on a, and that
if a becomes unavailable for long enough, b will become
unavailable as well. To model this correctly, we also need
to indicate how long b will be able to survive without the
presence of a. We do that by annotating each edge with
the survival time: the time span the dependent entity can
survive if the other one fails. While for some relationships,
such as the dependency of an application onto the machine
it runs on, this amount is obviously set to zero, in case of
dependencies between applications this can vary between zero
and several hours (e.g. in case that an application needs to
be fed by another one with data at regular time intervals).
Sometimes it is possible to extract this information from
the functional requirements documentation or from the SLA
specification. Although one can argue that these values could
change over time, we have empirically verified (by inspecting
documentation of several enterprise organizations) that this is
not usually the case: organizations do not require such a level
of detail yet.

Definition 3.1: A TD model is a pair 〈N,→〉 where N is a
set of nodes and →⊆ N ×N × T .

We write n1
t−→ n2 as shorthand for (n1, n2, t) ∈→.

A TD model allows one to express e.g. the dependencies
of hardware components on the physical environment they are
located in, the dependency of an application on the machines
it runs on, and the dependency of a business process on the
applications supporting it. We will show in Section V that this
graph can be built in a fully automatic way.

Fig. 1. A TD model example

Running example - Part 2: Figure 1 shows a TD model
built with the entities from Table I. The edges connecting n1

to m1, m2 and m3 express the dependency of the machines on
the network connection with other machines. The connections
from m1 to a1, a2 and a3, from m2 to db1 and from m3 to db2

express the dependency of software processes (applications
or databases) on the machines they run on. For all of these



connections the survival time is set to zero, since no entity
can survive the disruption of the ones it depends on, not even
for a short time. In turn, p1 depends on both a1 and a2, since
the customer management is achieved by providing on-line
banking and trading, but with different time constraints (five
hours for a1 and only one hour for a2). Similar reasoning
apply to a1 and p2.

Notice that dependency relationships are and relationships:
a node depending on two or more other nodes is disrupted even
if just one of these are affected by an incident. For the sake of
simplicity, in this work we do not consider or relationships,
even though it would be simple to include them in our model.

The number of entities can be very large in a real business
environment. However, the information needed to build the
model is already available after a RA (the first RA step,
according to NIST methodology [28], is system characteriza-
tion). For instance, the KARISMA tool developed at KPMG
to support RA requires – among other things – the collection
of enough data to build an accurate TD model. Any other tool
based on the same standard methodology will basically do the
same.

Incidents and their propagation Once the model of the
architecture is defined, it is possible to simulate the availability
of the system during and after the occurrence of an incident.
We define incidents as events causing the unavailability of a
given set of resources for a given time.

Definition 3.2 (Incident): Let org = 〈N,→〉 be an organi-
zation. An incident i for org is a mapping i : N → T .

For instance, if we expect that the average occurrence of
incident i would bring down machine m1 for 3 hours, we
model this by setting i(m1) = 3.

Running example - Part 3: Let us now introduce three dif-
ferent incidents affecting the availability of m3: Table II
presents them. In i1 one of m3’s hard disks is broken and the
downtime is the average time required to replace the broken
disk and restore data. i2 consists of a power disruption in the
building hosting m3, in this case the downtime is the average
duration of a power disruption. i3 consists in an OS failure, due
to software bugs, causing the consequent freeze of applications
running in m3 and the downtime is the average time needed
to detect the incident and reboot m3.

TABLE II
A LIST OF INCIDENTS POSSIBLY AFFECTING m3 .

Id Description Target Downtime
i1 Disk failure m3 9h
i2 Power disruption m3 3h
i3 OS failure m3 2h

Every incident directly involves one or more entities, caus-
ing them to be unavailable for a certain amount of time.
During this time, the incident may propagate to other entities,
following the TD model.

Definition 3.3: We say that an incident propagates from
a node n1 to n2, if they have a functional relationship and

the unavailability time of n1, due to the incident, exceeds the
survival time of n2 w.r.t. n1, causing it to become unavailable
until the incident is resolved.

Running example - Part 4: Figure 2 shows how i1 propa-
gates across our organization.

Fig. 2. Propagation chart of incident i1.

Assume that i1 occurs at t = 0: i1 brings down m3; at the
same time db2 becomes unavailable, since its survival time
w.r.t. m3 is zero. After five minutes a2 goes down and a3

follows after fifteen minutes. Accordingly to the TD model,
after one hour from the disruption of a2, the process p1 goes
down and after eight hours p2 goes down as well. After i1
has been repaired, nine hours after t0, all entities are repaired
in turn.

Downtime With this information, we can finally define
Downtime(i, n): the downtime caused by incident i on node
n (including propagation). This is the crucial information
needed in the Risk Evaluation and Mitigation phases by
evaluating the global consequences of an incident, as we will
address in Section IV.

IV. A MODEL FOR RISK MITIGATION

The system we introduced in Section III allows us to model
the propagation of incidents. We now show how we can use
this information for selecting the best set of countermeasures;
technically we aim at finding the set of countermeasures which
minimizes the cost due to the forecasted downtime of relevant
business processes.

A. Risk Evaluation

The first step toward Risk Mitigation is an accurate evalua-
tion of the costs associated to the downtime of each process.
In an organization, there are usually only few processes which
– if unavailable – directly cause a real damage (in our running
example, only p1 and p2). Clearly, this cost depends on the
business goals of the company (a one hour downtime of the
web server has a much higher monetary cost at Google than at
an insurance company with comparable revenues). To model
the cost of incidents we now define the damage evaluation
function, relating the disruption time to the (monetary) loss
affecting the organization.



Definition 4.1: Let org = 〈N,→〉 be an organization. The
Business-driven damage evaluation function (D) is a mapping
from downtime to costs D : N × T → Eur .

In our simplified example, the downtime cost of p2 is 120
Euro per hour (see Figure 1), so D(p2, x) = 120 × x. This
means that the occurrence of a incident i1 (which – after
propagation – causes a downtime of 55 minutes on p2) would
create a damage of 110 Euro. In practice, D may not be linear
(a downtime of 24 hours may well cause more losses that 24
downtimes of one hour). In general, D should be provided by
the organization’s business department for the most important
business processes and, in general, for all the business-relevant
entities in the organization. One can argue that providing an
accurate D function can be a time expensive task. In our
experience this does not represent a particular problem, as
the D function need to be defined only for the few business
critical processes.

Frequencies and Global Cost Having determined the cost
associated to an incident, we need now just one last factor
for an accurate risk evaluation, and that is an assessment of
frequency (likelihood) of an incident.

Definition 4.2: Given a set of incidents I , the incident
frequency, Freq(i), is a mapping I → R+ .

For instance, Freq(x) = 0.1 means that estimates indicate
that incident x is likely to happen once in ten years. We should
mention that NIST [28], [7] suggests a qualitative approach
to assess likelihood (High, Medium, Low), while COBIT [11]
promotes both qualitative and quantitative approaches. For our
goals, we require a numerical value, which in practice can be
derived from the past experiences of the assessment team or
from public domain statistics.

Now, the downtime function computed using the TD model
together with the damage and the frequency evaluation allows
us to compute the expected cost (per year) due to service
downtime for the whole organization.

Definition 4.3: Let org = 〈N,→〉 be an organization, I be
a set of incidents and D(n, t) the damage evaluation for org.
The estimated downtime cost for the system is defined as

Esdc(I) =
∑

i,n∈I×N

D(n, Downtime(i, n))× Freq(i) (1)

Going back to our example, if we estimate i1, i2 and i3
can happen respectively 5, 12 and 50 times per year, then
the estimated downtime cost of the system is approximately
10,000 Euro.

B. Risk Mitigation

The goal of Risk Mitigation is to bring down the estimated
downtime cost by applying a set of countermeasures, which
can be either technical or organizational. To achieve full
generality we define a countermeasure as a function which
modifies the organization, the set of incidents as well as their
frequencies. Each countermeasure has also a cost per year
(summing the amortization and the maintenance costs).

Definition 4.4 (Countermeasure): Let org = 〈N,→〉 be an
organization, I be a set of incidents and Freq be the frequency
estimate for I . A countermeasure c, is a pair 〈m, cost〉 where
m maps org, I, Freq into org′, I ′, F req′, and cost ∈ Eur is
the cost per time unit (year).

We note that in practice most countermeasures fall into one
of two classes: frequency countermeasures and time coun-
termeasures, accordingly to the resulting effect. The former
reduce the frequency of a given incident, while the latter
reduce the downtime due to the incident. In frequency coun-
termeasures, the projection of m on org′, I ′ is the identity
function. It is worth noting that a countermeasure completely
preventing an incident can be modelled by setting to zero either
the frequency or the downtime relative to the incident.

Running example - Part 5: Table III reports a list of coun-
termeasures to be applied on m3 to mitigate the negative
effects of incidents i1-i3. Notice that c1-c7 are technical

TABLE III
A LIST OF COUNTERMEASURES TO BE APPLIED ON m3 TO MITIGATE THE

NEGATIVE EFFECTS OF INCIDENTS i1-i3 .

Id Description Cost I Freq Downt.
C/y bef aft bef aft

c1 New disks 1000 i1 3 5 9 9
c2 UPS 3000 i2 12 12 1 3
c3 Backup machine 4000 I - - 2 -
c4 Service pack 900 i3 20 50 2 2
c5 New OS version 6200 i3 5 50 2 2
c6 Patch #143 300 i3 40 50 2 2
c7 Patch #146 300 i3 42 50 2 2
c8 Disk backup

strategy
2000 i1 5 5 5 9

countermeasures while c8 is organizational; moreover c1, c4-
c7 are frequency countermeasures since their effect is to
reduce the frequency of certain incidents, while c2, c3 and
c8 are time countermeasures since they reduce the downtime
of m3. Figure 3 shows the propagation of incident i1 after
the application of c8, which reduces the downtime of m3 to
five hours. Since the survival time of p2 (eight hours) is longer
than the downtime of a2, p2 is never disrupted by this incident,
and the component relative to p2 of the cost of i1 is zeroed,
reducing the overall estimated downtime cost.

Fig. 3. Propagation chart of incident i1 with countermeasure c8 in place.

It is usually possible to apply more than one countermeasure
on the same entity, but for this we have to consider that one



countermeasure may be incompatible with another one. An OS
patch, for example, can be incompatible with other patches;
moreover, deploying a backup machine can be useless if other
backup techniques are already in place.

For instance, in our Running Example, countermeasures c4-
c7 are mutually incompatible because the service pack can not
be installed if single patches are already installed, and because
installing patches for the old OS version with the new version
already installed would be impossible.

By combining the TD model, countermeasures and incidents
with their cost and frequency, we now give a formal definition
of best set of countermeasures as the set of countermeasures
that reduces the most the estimated downtime cost (taking into
account the cost of the countermeasures). In the following
definition we extend (1) to take into account the selected
countermeasures. We also denote by Downtime[C](i, n) the
downtime the incident i causes on node n in presence of
countermeasures C = {c1, . . . , cn}. Likewise, freq[C](i) is the
expected frequency of incident i presence of countermeasures
C = {c1, . . . , cn}.

Definition 4.5: Let org be an organization, I be a set of
incidents, Freq be the frequency estimate for I , and C be a
set of countermeasures.

• We call the estimated global cost of incidents
I in presence of C, Esdc(I, C) the value:∑

i,n∈I×N D(n, Downtime[C](i, n))× Freq[C](i)
• We say that BC ⊆ C is a best set of countermeasures

(w.r.t. C) if the countermeasures in BC are pairwise
compatible, and for every D ⊆ C of pairwise compatible
countermeasures, Esdc(I,BC) ≤ Esdc(I,D).

Thus, the best set of countermeasures is the one minimizing
the expected global cost. Similarly, the expected benefit of a
given set of countermeasures is the difference between the
expected downtime cost Esdc(I) and the expected downtime
cost after applying the countermeasures: Esdc(I,BC).

Running example - Part 6: We can now compute Esdc con-
sidering the three incidents (i1-i3) and each possible combina-
tion of countermeasures (c1-c8). Recall that only the disruption
of p1 and p2 involve a loss to the organization (see Figure 1).
The result is BC = {c1, c4}, i.e. the most cost-effective
strategy to mitigate the risk is to install the OS service pack
and to update m3’s disks.

Summarizing, our model provides IT managers with an
effective way of choosing the best set of countermeasures for
a given system. For space reasons, we have not addressed
other optimization possibilities which are made possible by
this model, but it is easy to see that one can use it to find for
instance “the least expensive set of countermeasures which
bring the expected downtime of service A down to 10 hours
per year” or “the best set of countermeasures within a given
budget”.

V. FEASIBILITY

In this section we argue that the approach we propose is
feasible. In particular, we show that the vast majority of the

input data required by our tool is readily available after a RA
and a BCP, and that it is possible to cope with the complexity
of the algorithms the tool requires.

Input Data The main concern regarding the feasibility of
our approach is whether the set of data it requires is easy
to collect. If this was not the case, organizations would not
be willing to accept it. Fortunately, the data it requires is
typically available after RA and BCP: first of all, an accurate
map of the IT infrastructure is readily available after a BCP
carried out following the BS25999 [16] standard (and is
also available after standard RAs). Secondly, an inventory
of possible incidents, together with their frequency has to
be compiled during the RA. Finally, a BCP should provide
(according to BS25999 standard) a complete evaluation of
the effectiveness of chosen incident response strategies (i.e.
countermeasures): thus, the organization is also required to
quantify downtime costs of the different entities before and
after the countermeasures have been applied. It is common
practice, and a well-known principle in RM [28], to derive this
information from previous observations (history of attacks):
the more accurate these observations are, the more precise the
assessment outcome is.

To further substantiate our argument, we note that this data
is also collected by tools devised to assist the RA and RM
processes. For instance, the Italian branch of KPMG [20] (a
worldwide company delivering also Information Risk Advi-
sory services) has developed a customizable tool, KARISMA
(Kpmg Advanced RISk MAnagement), to support their RA
activities. Among the information KARISMA collects via a
question-driven procedure, there is a map of the business
process entities (together with their relationships) and the
Business Impact Analysis values. KARISMA is based on
COBIT, and it is very likely that other tools for RA based on
COBIT would collect the same information. Our system can
thus be regarded as an additional component for KARISMA
or for any other COBIT-based tool for RA, supporting in
particular the Business Continuity Planning activity.

We also note that most of the information required to
build the TD model is also available when applying to an
organization an architectural framework, such as TOGAF [29],
Zachman [30] and ArchiMate [3]. Indeed, the layers defined
in those frameworks are similar to the ones we adopt for our
model, though used for different purposes (e.g. architectural
support, new component impact evaluation, etc.). Since those
project are widely employed (ArchiMate for instance is used
by ABN Amro and the Dutch Tax Office), and are supported
by several tools, they provide us an indirect confirmation of
the feasibility of actually obtaining the data needed by our
model.

Summarizing, our tool does not require organizations to
acquire new information (i.e. to employ new resources), rather
it uses in a different way the information already available after
RA and BCP.

Computational complexity The second concern regarding
the feasibility of our approach is whether the algorithms



underlying our framework are not too complex to be carried
out in reasonable time. It is easy to see that – even if we
assume that the organizational graph is acyclic – evaluating
the optimal of countermeasures has complexity in the order
of (e × r × i × c!) where e is the total number of entities, r
is the total number of relationships between entities, i is the
total number of possible incidents and, finally, c is the total
number of possible countermeasures. The presence of cycles
could increase the complexity, but we believe that practical sit-
uations present graphs that can be rendered acyclic after some
preprocessing. The only problematic factor in the equation is
of c!, which indicates that the presence of a relatively large
set of countermeasures would make it infeasible to carry out
a brute-force analysis to find the best set of countermeasures.
Presently, we are working at a brute force implementation
which is already giving satisfactory results on real datasets,
and we have developed heuristics based algorithms finding a
local optimum whose complexity is (e × r × i × c3), which
give very satisfactory results (in our experiments, the local
optimum always coincides with the global optimum). Other
ways to bring down the c! include automatically splitting the
set of countermeasures into various set of independent counter-
measures, which will make it possible to apply compositional
methods.

VI. IMPLEMENTATION

A preliminary problem we had to solve when tackling
the implementation issue is that of automatically building
the TD model. The information about the IT and business
infrastructure is typically spread across a number of free
text documents. To build the model it is necessary to report
information in a structured form, such as database tables.
Fortunately there exist tools for supporting the RA (such as
KARISMA) which can deliver this information in a structured
format. We automatically build the TD model by representing
each entry in the entity table of the dataset with a node and
each entry in the link table with an edge between nodes,
annotated with the survival time.

The actual implementation requires us to realize an al-
gorithm which (a) explores the TD model to simulate the
consequences of the incidents, (b) evaluates the global cost
of a set of incidents, (c) simulates the new behaviour of the
TD model in presence of a set of countermeasures and (d)
evaluates the new global cost of the set of incidents with
different subsets of countermeasures.

To realize this we use in first instance model checking [9],
which is a technique to algorithmically analyse concurrent
systems, typically used for verifying if (a model of) the
system satisfies some given properties, often specified as a
temporal logic formulas. The reason of this choice is that
model checkers are already devised to quickly explore a graph
of several (thousands of) possible system behavioural traces,
to find the one realizing a given property. Therefore, model
checkers provide us with a way of doing fast prototyping
without sacrificing performance too much. Among the several
model checkers available (e.g., SPIN [15], SMV [24], etc.) we

adopt UPPAAL [22], because (1) it allows to specify a time
dependent system (such as the one we need to model) and (2)
its extension UPPAAL CORA allows to solve optimization
problems such as those previously required in points (b) and
(d).

UPPAAL requires the system to be specified as a timed
automaton [9], [6], which is a finite automaton extended with
a finite set of real-valued clocks. Clock constraints, i.e. guards
on edges, are used to restrict the behaviour of the automaton.
UPPAAL CORA, is an extension of UPPAAL for cost optimal
reachability analysis which applies the theory of Linearly
Priced Timed Automata (LPTA) [21]. LPTA extend the model
of timed automata with prices on all edges and locations. In
these models, the cost of taking an edge is the price associated
with it, and the price of a location gives the cost-rate applied
when delaying in that location. In UPPAAL CORA prices
are defined by means of an implicit monotonically growing
variable called cost.

UPPAAL has the additional advantage of allowing us to
map in a very natural and straightforward way every element
of our model into a timed automaton with the same behaviour.
This one-to-one translation ensures the absence of side effects
due to the implementation. For the sake of presentation we do
not report here further implementation details.

To test our implementation we use a dataset related to a
real insurance company collected by KPMG auditors using
KARISMA during a RA. The dataset contains all the infor-
mation needed to build the TD model (19 macro business
processes and 122 sub-processes); the remaining information
(about incidents, costs and countermeasures) is also provided
by the KPMG auditing team who conducted the assessment.
In first instance, to avoid the state explosion problem and
maintain a reasonable computational time, we perform the
analysis on portions of the infrastructure, and then merge
results. In second instance we realize a translation of the
UPPAAL model into Prolog. This second implementation
allows us to deal with the entire dataset at once, without
splitting the IT infrastructure, and tens of incidents while
maintaining the computational time in the order of minutes.
We carry out optimal analysis for partitions of up to 18
countermeasures and a suboptimal analysis that can deal with
thousands of them, on a 3GHz Pentium IV machine with 1Gb
RAM.

VII. RELATED WORK

There exist various academic frameworks for carrying out
RA, but they all differ from our proposal in that they do not
model the propagation of incidents across an organization as
precisely as we do. For instance, Lenstra and Voss [23] present
a quantitative approach to IT risk management to determine the
optimal RM strategy given a limited budget. Their approach
requires performing a risk assessment on all the applications
supporting business processes and identifying the (monetary)
loss due to each threat on the business process they support,
thus the risk is evaluated in terms of the likelihood and the
loss. Authors define an action plan (set of countermeasures) as



something influencing the likelihood of a threat thus reducing
the risk; furthermore they associate a cost to it. The selection
of the best set of action plans consists in finding the set that
mostly reduces the likelihood of all threats within a given
budget. Since this approach is designed to deal with threats
to all the three aspects of information security (CIA), to
keep it feasible it lacks in a complete representation of the
constituents of an IT infrastructure (machines, facilities, etc.)
and in modelling the time dependencies between them, which
- as we have discussed in the introduction - is essential for
properly modelling the availability risks. Our model, on the
other hand, being specifically tailored for availability risks,
takes into consideration the time dependencies and therefore
allows us to simulate how an incident propagates across the
organization.

Furthermore, the authors’ choice of allowing a single,
atomic, action plan per threat implies that the risk management
team should already have found manually the best set of
countermeasures to be applied in response to an incident. The
proposed framework then, simply decides to apply or not this
set of countermeasures. On the other hand, our model is able
to compute the best set of countermeasures without requiring
any pre-processing phase and allowing one to find a more
fine-grained solution.

Asnar and Giorgini [4] introduce an extended Tropos [8]
goal model to analyse risk at organization level and to iden-
tify and enumerate relevant countermeasures for RM. Their
approach is mainly devoted to the enumeration of incidents
and countermeasures, while our approach focuses on selecting
and prioritizing incidents to be mitigated and possible counter-
measures to perform the mitigation. Another proposal is that
of Aagedal et al. [1], who developed the CORAS framework to
produce an improved methodology for precise, unambiguous,
and efficient risk analysis of security critical systems. CORAS
focuses on the tight integration of viewpoint-oriented visual
modelling in the RA process, using an UML-based approach in
the context of security and RA. Our approach is orthogonal to
CORAS, in the sense that we could use the output of CORAS
to feed out tool.

In addition to academic work there exist a number of
commercial tools supporting the Risk Management and RM
process. The most closely related to our work are Counter-
Measures and GSTool. Alion’s CounterMeasures [2] performs
Risk Management based on the NIST 800 series and OMB
Circular A-130 USA standards. It provides the ability to
perform cost/benefit analysis and ROI on countermeasures.
GStool [14] is developed by Federal Office for Information
Security (BSI) to assist users of the IT Baseline Protection
Manual. GStool supports a qualitative assessment of protection
requirements. The main difference between these approaches
and ours is that they face the countermeasures selection by an
economic prospective (ROI) or a technical prospective only,
rather we merge the two aspects in an holistic behavioural
model of the whole organization. For a wider list of Risk
Management supporting tools refer to [13].

Finally, our work has some analogy with some proposal for

using model checking to assess the survivability of distributed
systems [19], [10]. Jha and Wing [19] use the NuSMV model
checker to model the distributed environment and generate a
failure scenario graph (sum of counterexamples of survivabil-
ity properties) by injecting faults into the model. Secondly,
they add some additional information about the probability of
harmful events to perform reliability analysis and cost/benefit
analysis of possible countermeasures. Our approach differs in
that we model also time dependencies between entities: thus
we are able to perform a more accurate evaluation of the
global impact. Furthermore our approach is strictly focused
on information Risk Management. Cloth and Haverkort [10]
develop a model checking-based approach to evaluate the
survivability of a system. Survivability is defined as the ability
of a system to recover in a timely manner predefined service
levels after the occurrence of a disaster. They describe the
system as a Stochastic Petri Net and then automatically convert
it into a Continuous Time Markov Chain (CTMC). Finally
they use a model checking engine to obtain a time-probability
chart that expresses the recovery probability in relation to the
recovery time.

VIII. DISCUSSION, FUTURE WORK AND LIMITATIONS

In this paper we focus on the mitigation of risks related
to the availability of an organization’s IT infrastructure. We
argue that the way present methodologies address the time
and functional relationships between the constituents of the
IT infrastructure is inadequate to properly evaluate the global
consequences of an incident. Our contribution consists of a
methodology and a tool for carrying out a Risk Mitigation
activity which allows to assess the global impact of a set of
risks and to choose the best set of countermeasures to cope
with them. This is achieved by employing the TD model that
allows us to represent the actual propagation of an incident
across the organization and to deal with the countermeasures
selection process. To this end, the presence of a tool is
necessary due to the complexity of the selection process.

We argue that the input required by our approach is typically
already available after a serious RA and BCP assessments;
this makes our proposal attractive as it does not require the
collection of new information. Indeed we believe that our ap-
proach can be integrated in Risk Management methodologies
to provide a more precise Risk Mitigation activity.

Our approach is aimed at finding the set of countermeasures
minimizing the expected yearly cost due to the unavailability
of IT services. Here we note that a related organization goal
is that of achieving a given Recovery Time Objective (RTO),
i.e. the latest point in time at which operation must resume
after a failure. While this does not reduce the value of our
proposal, we believe our model for incident propagation can
be extended to analyse the required steps to achieve the given
RTO. This is one of the targets for our future work.

Actually, our present system could already be used for this
purpose by employing a cost function which is zero before the
RTO and very high after the RTO. However, we must warn



that using such a highly discontinuous cost function may result
in an inaccurate analysis.

Finally, our system is particularly suited to support continu-
ous risk management [25]: thanks to its fine granularity, it can
be easily reviewed to match situational changes, allowing for
early detection of service deterioration, and prompt reaction
to changing environments.

ACKNOWLEDGEMENTS

We thank Pascal Van Eck and Pieter Hartel for their valuable
comments.

REFERENCES

[1] J. Ø. Aagedal, F. den Braber, T. Dimitrakos, B. A. Gran, D. Raptis,
and K. Stëlen. Model-Based Risk Assessment to Improve Enterprise
Security. In EDOC ’02: Proc. 6th International Enterprise Distrubuted
Object Computing Conference, pages 51–63. IEEE Computer Society,
2002.

[2] Alion Science and Technology. CounterMeasures.
http://www.countermeasures.com.

[3] The ArchiMate project. http://archimate.telin.nl.
[4] Y. Asnar and P. Giorgini. Modelling Risk and Identifying Countermea-

sure in Organizations. Technical report, University of Trento, 2006.
oai:UNITN.Eprints:1035.

[5] Basel II: Revised international capital framework, 2005.
http://www.bis.org/publ/bcbsca.htm.

[6] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms and
Tools. In J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures
on Concurrency and Petri Nets, volume 3098 of LNCS, pages 87–124.
Springer-Verlag, 2003.

[7] P. Bowen, J. Hash, and M. Wilson. Information Security Handbook: A
Guide for Managers. Technical report, NIST, 2006. SP 800-100.

[8] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
TROPOS: An Agent-Oriented Software Development Methodology.
Technical report, University of Trento, 2002. oai:UNITN.Eprints:84.

[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2000.

[10] L. Cloth and B. R. Haverkort. Model Checking for Survivability. In
Proc. 2nd Int. Conference on the Quantitative Evaluation of Systems
QEST’05, pages 145–154. IEEE Computer Society, 2005.

[11] CobiT: Control Objectives for Information and related Technology.
http://www.isaca.org.

[12] R. Cocchiara. Beyond disaster recovery: becoming a resilient business.
Technical report, IBM, 2005. http://ibm.com/services/its/resilience.

[13] ENISA Technical Department. Risk Management: Implementation
principles and Inventories for Risk Management/Risk
Assessment methods and tools. Technical report, European
Network and Information Security Agency (ENISA), 2006.
http://www.enisa.europa.eu/rmra/rm home.html.

[14] Federal Office for Information Security (BSI). GSTool.
http://www.bsi.bund.de/english/gstool/.

[15] G. J. Holzmann. The SPIN model checker. Addison-Wesley, 2003.
[16] British Standards Institute. Business continuity management - Part1:

Code of practice. Technical Report 25999-1, BSI, 2006.
[17] ISO. Information Technology - Security techniques - Guidelines for the

management of IT security. Technical Report 13335, ISO/IEC, 2001.
[18] ISO/IEC 17799:2005 Information Security - Code of Practice for Infor-

mation Security Management, 2000. http://www.iso.org.
[19] S. Jha and J. M. Wing. Survivability analysis of networked systems. In

Proc. 23rd Int. Conference on Software Engineering (ICSE ’01), pages
307–317. IEEE Computer Society, 2001.

[20] http://www.kpmg.com.
[21] K. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T. Hune, P. Pet-

tersson, and J. Romijn. As Cheap as Possible: Efficient Cost-Optimal
Reachability for Priced Timed Automata. LNCS, 2102:493–506, 2001.

[22] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
1997.

[23] A. Lenstra and T. Voss. Information Security Risk Assessment, Aggre-
gation, and Mitigation. In ACISP: Information Security and Privacy:
Australasian Conference, 2004.

[24] Z. Liu and M. Joseph. Verification of Fault Tolerance and Real Time. In
26th IEEE Symposium on Fault Tolerant Computing Systems (FTCS-26),
pages 220–229. IEEE Computer Society, 1996.

[25] R. L. Murphy, C. J. Alberts, R. C. Williams, R. P. Higuera, A. J. Dorofee,
and J. A. Walker. Continuous Risk Management Guidebook. Carnegie
Mellon Software Engineering Institute, 1996.

[26] OCTAVE risk methodology. http://www.cert.org/octave/.
[27] M. C. Paulk, C. V. Weber, B. Curtis, and M. B. Chrissis. The capability

maturity model: guidelines for improving the software process. Addison-
Wesley Longman Publishing Co., Inc., 1995.

[28] G. Stoneburner, A. Goguen, and A. Feringa. Risk Management Guide
for Information Technology Systems. Technical report, NIST, 2002.
SP 800-30.

[29] The Open Group. TOGAF (The Open Group Architecture Framework),
2003. http://www.opengroup.org/architecture/togaf8-doc/arch/.

[30] The Zachman Institute for Framework Advancement. Zachman Frame-
work, 2007. http://www.zifa.com/.


