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ABSTRACT
Nowadays, several threats endanger cyber-physical systems.
Among these systems, industrial control systems (ICS) op-
erating on critical infrastructures have been proven to be
an attractive target for attackers. The case of Stuxnet has
not only showed that ICSs are vulnerable to cyber-attacks,
but also that some of these attacks rely on understand-
ing the processes beyond the employed systems and using
such knowledge to maximize the damage. This concept
is commonly known as “semantic attack”. Our paper dis-
cusses a specific type of semantic attack involving“sequences
of events”. Common network intrusion detection systems
(NIDS) generally search for single, unusual or “not permit-
ted” operations. In our case, rather than a malicious event,
we show how a specific series of “permitted” operations can
elude standard intrusion detection systems and still damage
an infrastructure. Moreover, we present a possible approach
to the development of a sequence-aware intrusion detection
system (S-IDS). We propose a S-IDS reference architecture
and we discuss all the steps through its implementations. Fi-
nally, we test the S-IDS on real ICS traffic samples captured
from a water treatment and purification facility.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]:
General—Security and protection

General Terms
Cyber-physical system; Intrusion detection system; Seman-
tic attack; Sequence attack
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1. INTRODUCTION
Industrial control system (ICS) is a term that refers to a

large and broad variety of systems used in industry for mon-
itoring purposes. These systems have been used for years,
but they have recently acquired new functionalities and are
now more similar to classical networked IT systems. Infras-
tructures that used to be standalone entities have become
interconnected and remotely accessible by operators. This
change improves the manageability of industrial control sys-
tems but it also increases their exposure to cyber-threats.
A cyber-attack that strikes ICSs can endanger the infras-
tructure managed by the control system. In case of critical
infrastructure (e.g., power plant, electrical grid) the attack
may also affect citizens and can put human lives at risk.

Not all cyber-threats endanger ICSs in the same way. At-
tacks such as Denial of Service (DoS) strike the IT control
infrastructure but do not directly target the controlled phys-
ical system. Other attacks instead rely on knowledge about
the control processes or even the physical systems controlled
by ICSs and try to maximize the damage inflicted on the
physical world. This kind of attacks goes under the name of
semantic attacks.

Semantic attacks require deep knowledge of protocols, soft-
ware, hardware and physical systems involved in an infras-
tructure. The more an attacker knows about the targets
the better he can trigger the systems into inconsistent or
dangerous states. Semantic attacks can be of several types.
Stuxnet [7] is one of the most known semantic attacks. The
malware was designed to manipulate embedded software of
Programmable Logic Controllers (PLCs) of Iranian nuclear
enrichment facilities and disrupt nuclear centrifuges.

Our work focuses on a specific type of semantic attacks
called sequence attacks. These attacks concern the misplace-
ment of events within a sequence of ICS operations. Se-
quence attacks do not involve events that are malicious per
se (e.g., unknown connections, out-of-range values of pro-
cess variables, etc.). Instead, they exploit the possibility to
arrange “valid” events (e.g. network messages, log entries,
variable values) in a way that their presence, in relation
with other operations, can cause problems to targeted de-
vices (e.g., faults, failures).

Sequence attacks are not new in literature. A U.S. report
on critical infrastructure protection describes a sequence at-
tack being the cause of “water hammer effects” [24]. This
attack relies on rapidly opening and closing control valves
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in order to break them. Furthermore, Carcano e.a. [8] show
the impact of a sequence attack on a pipe where the high
pressure steam flowing on it is regulated by two valves. By
closing and opening these valves with the right timing the
authors succeed to increase the pressure to a critical value.

Common intrusion detection systems (IDSs) generally search
for single events that either show clearly malicious or at least
“unusual” characteristics. However, sequence attacks do not
involve such characteristics and are likely to pass through
unnoticed. An approach to anomaly-based intrusion detec-
tion, called“specification-based”detection, can solve specific
cases of sequence attacks but its implementation relies on the
presence of an exhaustive and accurate specification of sys-
tem operations, like shown, for example, for some protocols
of the TCP/IP protocol suite [22]).

In this paper we propose a different solution for sequence
attack detection on ICS systems. Our approach relies on
a sequence-aware intrusion detection system (S-IDS) that
identifies patterns of ICS network events, extracts their se-
mantic meaning and models known behaviors over time. We
define a S-IDS reference architecture and show a prototypi-
cal implementation of our approach. In our work, we make
use of discrete-time Markov chains (DTMCs) to describe
several ICS device operations acquired by previously recorded
network messages and log entries. Furthermore, we de-
fine a detection mechanism based on the computation of a
weighted-distance among Markov chain states. Finally, we
test our implementation on data and communication traces
belonging to real ICS infrastructures.

The rest of the paper is structured as follows. Section 2
gives a brief overview of ICS and introduces the sequence at-
tacks. Section 3 discusses intrusion detection state of the art.
Section 4 proposes a reference architecture for a sequence-
awere intrusion detection system. The implementation of
the S-IDS is discussed in Sections 5, 6 and 7. We test the
S-IDS on a real scenario in Section 8. Finally, Section 9
concludes the work and outlines future work.

2. INDUSTRIAL CONTROL SYSTEMS AND
“SEQUENCE ATTACKS”

Given the number of different ICS deployments and the
variety of possible threats endangering each one of those we
narrow the scope of this paper to a basic set of ICS devices
and cyber-attacks of interest.

2.1 ICS Overview
The acronym ICS encompasses a large variety of technolo-

gies such as Control and Data Acquisition Systems (SCADA),
Distributed Control Systems (DCS), and Programmable Logic
Controllers (PLCs) [23].

ICS networks gather together a number of different de-
vices. The so called “field devices” are close or connected to
the physical process under control. These devices include:

• Sensors and Actuators: components that directly mea-
sure and modify physical parameters

• Remote Terminal Units (RTUs): electronic control de-
vices that act as an interface to the physical process

• Programmable Logic Controllers: devices running the
programs that instruct sensors and actuators and send-
ing data back and forth to the process control network

Devices supervising the control process include:

• SCADA Servers: machines that manage and coordi-
nate PLCs and RTUs

• Human Machine Interfaces: components that provide
user-friendly interfaces to engineers

• Engineering Workstations: computers used to program
PLCs

Every ICS system uses a set of communication protocols to
exchange information and manage devices. Industrial con-
trol systems relied on serial communications for decades.
In the last years, TCP/IP- and Ethernet-based networking
technologies have been increasingly integrated in these in-
frastructures. For this reason, several industrial protocols
have been ported to the TCP/IP protocol stack.

We mostly focus our research on three different protocols:
Modbus, MMS and IEC 60870-5-104. These protocols are
widely used in industrial control systems and include a sig-
nificant variety of properties and characteristics.

• Modbus: is an application layer protocol, de facto stan-
dard for industrial systems [20]. Modbus communica-
tions rely on a client/server paradigm. In every com-
munication, a client machine sends requests towards
one or more PLCs and waits for responses.

• MMS : the Manufacturing Message Specification [14]
implements all seven layers of the ISO/OSI stack. How-
ever, the most used version of the protocol works over
TCP/IP. MMS is a client/server protocol with syn-
chronous or asynchronous communication patterns.

• IEC 60870-5-104 : is part of the IEC 60870 set of
standards defining mechanisms used for telecontrol [6].
IEC 60870-5-104 defines the ISO/OSI application layer
of the standard and works over TCP/IP. The proto-
col mostly uses asynchronous balanced or unbalanced
data transfer modes. In the remainder of this paper,
we will refer to IEC 60870-5-104 as “IEC104”.

2.2 Sequence attacks
Our work focuses on “semantic attacks” and, particularly,

aims to detect a specific kind of semantic attacks, namely
“sequence attacks”. We can divide sequence attacks into two
different sub-sets: “order-based” and “time-based” attacks.
The former are attacks in which messages or commands are
sent with an incorrect/malicious order. The latter are at-
tacks in which messages or commands are sent with an in-
correct/malicious timing.

Carcano et. al. discuss in [8] an example of order-based
sequence attack. Their setup involves a pipe where some
steam flows at high pressure. Two valves (V1 and V2) con-
trol the pressure within the pipe. The authors show that
it was possible for an attacker to put the system in danger
by just misplacing two fully legitimate control messages. In
fact, an attacker that has access to the network can inject a
write message to the PLC controlling the valves to force V2’s
complete closure and V1’s complete opening. These instruc-
tions have the effect to maximize the incoming steam and,
thus, the pressure within the pipe. Each of these commands
are perfectly legal when considered individually, while send-
ing them in the specified order will bring the system to a
critical state.
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A report from the US President’s Commission on Criti-
cal Infrastructure Protection [24] presents a similar example
of a time-based sequence attack. The discussed scenario
involves the water distribution sector. The authors of the
report explain how water pipelines are controlled by ma-
jor control valves. These valves can be rapidly opened and
closed causing a so-called water hammer effect1, which could
result in a large number of simultaneous main breaks in the
pipeline. Such an attack could be carried out by an attacker
that sends an unusually rapid sequence of legitimate write
messages issuing open and close commands to the PLCs con-
trolling these major control valves.

A“sequence-aware” IDS has to deal both with order-based
and time-based sequence attacks. In what follows we are
going to present a detection mechanism aiming to effectively
detect these kinds of attack.

3. RELATED WORK
According to [5] there are two main categories of network

intrusion detection systems: misuse-based and anomaly-based.
Misuse-based intrusion detection systems, also referred as
signature-based, rely on a precise definition of malicious be-
havior (e.g., the description of a malicious network message
or a more complex list of properties profiling attackers’ ac-
tivities). Anomaly-based intrusion detection systems use in-
stead a complementary approach. These systems exploit a
definition of normal behavior and flag everything that does
not match the definition. Building a database of normal
behaviors is an operation that usually requires a learning
phase. In this phase, an anomaly-based intrusion detection
system records information of the network with the assump-
tion that no malicious activities are performed in the mean-
time, and extracts the parameters that define its knowledge
of what is allowed or not. A different way to perform this
operation, is by learning such normal behaviors from the
specifications of a system or a protocol. This method (some-
times referred as a completely different category of intrusion
detection systems, named “Specification-based” [22]) allows
to build a model of normal behavior without learning phase.

The object of the analysis of a network intrusion detec-
tion system can be of different kinds. The most common
type is the content of network messages.. Both misuse-based
and anomaly-based intrusion detection systems can look into
message headers or payloads to collect valuable information
on which to base their analyses. Two examples of intrusion
detection systems based on header analysis are the works
proposed in [12] and [18]. Works described in [25, 2, 21] are
examples of payload-based approaches. It is worth mention-
ing that Scheirer et al. [21] go beyond a static analysis of
payloads by extracting binary codes and analyzing their se-
mantic to model applications’ behaviors. A further approach
to intrusion detection relies on network flows analysis. Flow-
based intrusion detection profiles network traffic in terms of
connections or properties of the traffic (e.g., peeks, bursts,
etc.) to identify unknown or malicious trends in the data,
such as [15] and [1].

The approach we describe in this paper shifts the object of
the analysis on sequences of messages. Chandola et al. dis-
cuss several theoretical approaches to sequence analysis and
modeling in [4]. The authors provide three different formu-

1A pressure wave generated within a fluid in motion due to
sudden stops or changes of direction.

lations of the sequence anomaly detection problem: (1) iden-
tifying anomalous sequences with respect to a set of known
normal sequences; (2) identifying anomalous subsequences
within a long sequence; and (3) identifying subsequences
whose frequencies of occurrence are anomalous.

To the best of our knowledge there are only few examples
of S-IDSs implementations in literature. Sekar et al. [22] pro-
pose to profile IP, ARP, TCP and UDP communications in
a network. The authors discuss the concept of specification-
based anomaly detection and describe the steps to imple-
ment a detection system based on extended finite state au-
tomata (EFSA). This work proves the feasibility of an anal-
ysis based on comprehensive protocol specifications but it
does not extend the approach to application-layer protocols.
More importantly, it does not investigate the possibility to
learn such patterns in case precise specifications are missing.

Krueger et al. [16] implement a method for protocol in-
spection and state machine analysis called PRISMA. Their
approach involves n-grams to analyze message similarities
and to group them into events and it uses Markov chains to
link such clusters together and to identify rules defining the
behavior of a network communication. [22] shows a method
to model communication protocols by looking at the net-
work traffic. However, the authors focus their research on
text protocols and do not test their approach on binary pro-
tocols. Industrial control systems mainly use binary proto-
cols and works such as [10] highlight the difficulties of using
n-gram analysis in such environments.

Works such as [9, 27] attempt to answer to this last is-
sue. Goldenberg et al. [9] focus on a industrial application
protocol (Modbus) and use a deterministic finite automaton
(DFA) to build a model from real traffic traces. The au-
thors rely on the assumption that Modbus traffic is highly
periodic and they argue that tests performed on real traffic
show a low-rate of false positive. It is worth noting that
the human interaction with the system is never taken into
account in the modeling phase, causing every activity per-
formed by an operator to be an anomaly of unknown type.
Beyond, our tests show that Modbus traffic is periodic only
if we are able to filter out random delays. When applying
the approach proposed by Goldenberg et al. on our real-
world Modbus traffic samples it shows to be insufficient to
model the communications and would have created an un-
manageable number of states in the DFA and a high number
of false positive in the detection phase. So therefore, a more
refined modeling approach is necessary.

Yoon et al. [27] also focus on Modbus but they model
communications using dynamic Bayesian networks (DBNs)
and probabilistic suffix trees (PSTs). When a new sequence
is captured, the system looks at the likelihood to generate
this sequence from the PST model. As discussed for [9],
the authors rely on the predictability of industrial control
system traffic. However, they implement a mechanism that
evaluates whether an anomalous sequence is just missing a
message (e.g., due to a delay on the network). The algorithm
works as follows: if the action of restoring the message al-
lows the sequence to be accepted by the PST, the system
considers it as “normal traffic” and proceeds. Even if this
mechanism removes most of the false positives, the authors
do not discuss the impact on the number false negatives
(e.g. real attacks opportunely filtering specific messages on
the network) which we suspect to become a problem.
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Hadžiosmanović et al. [11] approach the problem in a dif-
ferent way by looking directly at ICS process variables. The
authors extract variable values from devices’ network com-
munications and use autoregression modeling and control
limits to monitor their changes over time. When a value
does not fit the model or exceeds the control limits, the in-
trusion detection system raises an alert providing the correct
expected behavior. The approach shows promising results
but faces several difficulties in modeling specific classes of
variables (e.g. floating points). This is due to the way ICS
applications deal with variables. When the size of a process
variable exceeds the memory unit used by an application
(e.g., 16 bits in Modbus) the value is split and saved within
two or more memory locations. The intrusion detection sys-
tem is unable to follow such mapping and treats every mem-
ory location independently from the others. This ultimately
causes the usage of erroneous models.

Finally, it is worth mentioning that there are several ex-
amples of sequence-aware approaches to intrusion detection
in the field of generic host-based intrusion detection systems.
Some of this works focus on profiling user activities [17].
Others focus instead on profiling programs or sequences of
system calls [13, 19, 26].

Having said this, we argue that sequence attack detection
within industrial control systems still deals with the follow-
ing limitations:

Security solutions such as intrusion detection systems can-
not recognize semantic attacks without any knowledge of the
infrastructure and the physical processes under control

Focusing on a large and comprehensive sets of character-
istics can cause models to grow and become unmanageable

Random delays and human operations can create noise
within models and can decrease detection accuracy

Our work attempts to address these three limitations.

4. S-IDS ARCHITECTURE
In Figure 1, we propose an architecture for a sequence-

aware intrusion detection system which is based on a lay-
ered structure. Each layer receives information items from
a lower layer, evaluates them, and finally forwards the re-
sults to the following layer. A layered structure allows to
abstract from the input sources and to improve both usabil-
ity a maintainability of the S-IDS.

The first layer is the Reader. The Reader is in charge
of capturing raw information (e.g., files, network packets,
data streams, etc.) and generates a uniform and identi-
cally formatted input stream for the S-IDS. Furthermore,
the Reader filters out redundant or corrupted data that will
not be needed by the following layers.

The Sequencer is the core of the architecture. This layer
is in charge of transforming the data flowing through the
Reader into a temporal sequence of events. This activity
relies on a precise definition of what an event is. Depending
on the goal of the analysis, the event is defined by a set of
rules used by the Sequencer to organize such information in
formalized data units. As an example, read messages may
be considered one type of event while all write messages can
form another type of event. If needed, a more fine-grained
categorization of events can be implemented (e.g., also de-
pending on the register read or written). Thereafter, the
Sequencer sorts the units according to a timestamp repre-
senting the moment in which the event has occurred. Fi-
nally, the obtained sequence is forwarded to the next layer.

Figure 1: S-IDS general architecture

The Modeler is the last layer that performs data manipu-
lation. This layer is in charge of reading temporal sequences
coming from the Sequencer and building models that rep-
resent how the system behaves over time. A refined mod-
eling step is necessary for two reasons. First, it is unfea-
sible to store and analyze large amounts of long sequences
of events without exhausting computational resources. An
S-IDS could be interested in long-time behavior of a specific
device and capture information for days or weeks. There-
fore, a Modeler must act as a data compressor. Second, the
detection mechanisms will focus on a set of features con-
tained and hidden within the sequences. For this reason,
the Modeler is used to emphasize such features and offer
a simple interface to access valuable information. We will
later show what mechanisms a modeler will use for this task.

The Detection layer describes all detection algorithms used
with the models. With respect to the underlying layers it
does not completely abstract from Modeler’s output. In fact,
the implementation of the detection mechanisms is usually
linked to the specific data structures of the model and their
set of properties. The Detection layer uses a set of “train-
ing models” as reference point (either of normal or abnormal
behavior) and analyzes the differences of the“detection mod-
els”. Furthermore, the Detection layer is in charge of arising
alerts to users when “detection models” show malicious pat-
terns.

In what follows we discuss possible implementations of an
S-IDS. We use two Reader instances to gather information
from network messages and log files. Then, we show three
possible different Sequencer instances to analyze ICS pro-
tocols, host log entries, and the behavior of several process
variables. We use discrete-time Markov chains to model se-
quences. Finally, we implement a detection mechanisms that
computes weighted-distance statistics among Markov chains
based on the probability of their transitions.

5. SEQUENCING
Detecting sequence attacks relies on effectively sequenc-

ing and modeling devices’ operations and behaviors. In this
section we describe how to transform a trace of messages,
commands, log entries, or similar into ordered lists of events.
The event represents the abstraction we use to arrange in-
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formation in a chronological order. As described in Sec. 4
we show three different use cases: network communications,
host log entries, and process variable values.

5.1 Network communication
A unique definition of “sequences of events” in the context

of network communications cannot describe in details the va-
riety of protocols, communication types (e.g., synchronous
vs. asynchronous) and communication patterns (e.g., push-
ing vs. polling) being used in ICS. For this reason a specific
definition of each kind of communication is needed. We ex-
tensively treat this topic in [3] and we derive three different
definitions for Modbus, MMS, and IEC104. For the purpose
of this paper, we report here the definition of a Modbus
sequence:

Definition 1. A Modbus sequence is a time-ordered list of
events {etn} where e is a 3-tuple <ID, Code, Data> derived
from a sequence of message pairs (mReq

tn ,mRes
t>tn).

ID is the “Transaction Identifier”, Code indicates the type
of operation performed, and Data represents the information
carried by Modbus requests and responses (its semantic de-
pends on the “Function code” and can represent addresses,
number of coils or registries, numerical values, etc.). In case
requests or responses do not have a match (e.g., unanswered
requests) the pair will reduce to a single message.

In Section 8 we test an S-IDS instance on a Modbus com-
munication network.

5.2 Log Files
A log file intrinsically defines a sequence of operations

or events within a system or a network. For this reason,
the definition of a “sequence of events” simply involves the
selection of a proper subset of entries within the log.

Log files used in ICS are likely to record a large set of
heterogeneous events that occur during ICS operations. De-
pending on their nature, they can store information about
a specific system or store data related to communications
among devices. Events can be notifications, commands,
alerts, errors, etc.. Moreover, there are different possible
triggers of such events (e.g., human operators, time-scheduled
operations, etc.).

For the purpose of modeling an ICS’ “normal” behavior, a
sequence defined on a log file could avoid alerts, errors and
any other event that identifies a problem. However, we are
aware of situations in which operators deal with recurrences
of warnings caused by correct operations. For this reason
we argue that only human activities such as logins and lo-
gouts should not be part of the model due to their high time
variability.

Therefore,
Definition 2. A logfile sequence is a time-ordered list of

events {etn} where e is a n-tuple representing the attributes
of a log entry that identify an operation performed by a
device.

When the structure of the log is known, the previous def-
inition can be further refined by filtering specific fields (e.g.,
redundant information).

5.3 Process Variables
A “sequence of events” related to a process variable de-

scribes how its value changes over time (as shown in [11]).
For this reason,

Definition 3. A process variable sequence is a time-ordered
list of events {etn} where e is the value of the process vari-
able at time t.

Usually, ICSs deal with thousands of variables that rep-
resent physical or control parameters. Not all of them are
suitable for a sequence analysis and the benefit given by
modeling such data depends on its semantic meaning. As
an example, modeling a quantity such as a temperature or a
pressure can give useful insights on the behavior of a system
component and its physical boundaries. On the other hand,
bitwise variable modeling can result in a random sequence
of elements. Finally, two or more process variables can be
logically linked together. If this link is a priori known, event
e can be a n-tuple of values.

6. MODELING
Once we have established the event sequences, we can cre-

ate a model of our system using the chosen modeling ap-
proach. In this work we use discrete-time Markov chains
(DTMC).

As shown in [3], modeling ICSs with DTMCs has some
advantages with respect to using other modeling techniques
such as n-grams or Deterministic Finite Automata (DFA)
and fits our need for a robust and probabilistic model.

In case of discrete-time Markov chains (DTMC), the mod-
eling process clusters in a model’s state sequence events that
share the same semantic meaning. In the “network commu-
nication” case this concept can refer to the involved com-
mands or carried data (e.g., a DTMC state that gathers
together all the “write” commands that change a specific
variable). In the “log file” case it is possible to cluster se-
quences of events that share the same identification code or
deal with the same component (e.g., read notifications of a
device status). Finally, in the “process variable” case, the
DTMC states can cluster values belonging to a specific in-
terval (e.g., temperature values discretized to integer scale).

The DTMC transition between two states A and B indi-
cates that, in the sequence under analysis, at least an event
belonging to B comes just after an event belonging to A.
The construction of a DTMC is independent from the appli-
cation protocol and it is completely automated. For every
event of a sequence, the modeling algorithm either adds it
to an existing state (“updateS” function), or creates a new
one in case the event does not match the attributes of any
other state in the model (“addS” function). Moreover, in
each step, the algorithm adds or updates a transition func-
tion that links the previous visited state to the current one
(“addT”and“updateT”functions respectively). Algorithm 1
shows the DTMC modeling process.

Every state S is defined by a 5-tuple<Data, Type, #Events,
FTS, LTS> consisting of:

• Data: information that univocally identifies S and de-
scribes the portion of information that its events share
with each other

• Type: attribute that indicates if S represents elements
that include: request/response pairs, just requests or
just responses (in case no matches are found)

• #Elements: number of elements found in the se-
quence that belong to S

• First Time Seen (FTS): timestamp of the first ele-
ment annexed to S
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Algorithm 1: ModelingDTMC(sequence)

forall the etn ∈ sequence do
StateDTMC ← extract attributes(etn);
if StateDTMC ∈ DTMC then

updateS(StateDTMC);
else

addS(StateDTMC , DTMC);

if TransitionpreviousState,StateDTMC ∈ DTMC then
updateT(TransitionpreviousState,StateDTMC );

else
addT(TransitionpreviousState,StateDTMC ,
DTMC);

previousState ← StateDTMC ;

• Last Time Seen (LTS): timestamp of the last ele-
ment annexed to S

Every transition function δ from a source state (Src) to a
destination state (Dst) is defined by a 6-tuple <#Probabil-
ity, Jumps, FJ, LJ, ATE, σATE> consisting of:

• Probability: the ratio between the number of jumps
from Src to Dst and the total number of jumps from
Src to any other state of the DTMC

• #Jumps: number of jumps from Src to Dst found in
the sequence

• First Jump (FJ): first occurrence of this transition
in the sequence

• Last Jump (LJ): last occurrence of this transition in
the sequence

• Average Time Elapsed (ATE): average time be-
tween two consequent states of Src and Dst

• Standard Deviation on Time Elapsed (σATE):
standard deviation calculated over all occurrences of
this transition

To illustrate how the DTMC modeling process works, let
us consider the following sample sequence built on the“Mod-
bus network communication” use case:

1. Modbus “Request/Response” element: Tran. ID =
“134”, Unit ID = “1”, Function Code = “1” (Read Coils),
Data = “Starting address = 0, Quantity of coils = 1”,
Timestamp = “1st Sep. 2013 10:15:32.032”

2. Modbus “Request/Response” element: Tran. ID =
“135”, Unit ID = “1”, Function Code = “3” (Read Holding
Registers), Data = “Starting address = 100, Quantity of
registers = 10”, Timestamp = “1st Sep. 2013 10:15:33.126”

3. Modbus “Request/Response” element: Tran. ID =
“136”, Unit ID = “1”, Function Code = “1” (Read Coils),
Data = “Starting address = 0, Quantity of coils = 1”,
Timestamp = “1st Sep. 2013 10:15:34.983”

4. Modbus “Request/Response” element: Tran. ID =
“137”, Unit ID = “1”, Function Code = “3” (Read Holding
Registers), Data = “Starting address = 100, Quantity of
registers = 10”, Timestamp = “1st Sep. 2013 10:15:35.033”

As shown in Figure 2, the first event of the sequence cre-
ates a DTMC state of type“Request/Response”representing
Modbus messages used to read 1 coil from address 0 (State
A). The second element of the sequence creates another state

in the model, which has the same “Type” attribute but rep-
resents Modbus messages used to read 10 registers from ad-
dress 100 (State B). At this point, the model has also a
transition between the two states that describes the sequen-
tiality between the two elements of the sequence (Transi-
tion 1) as shown in the figure. The third element of the
sequence has the same attributes as the first element, and
thus, will increase the attribute “Number of elements” of the
first DTMC state. However, a new transition connects back
State B to State A to show the new relationship observed in
the sequence. Finally, the forth element of the sequence is
part of State B since it has the same attributes as the second
element of the sequence. As the model already has a tran-
sition linking the two states, the algorithm only increases
the attribute “Number of jumps” of the transition that con-
nects State A to State B and the statistical attributes get
updated. Figure 3 shows the final DTMC.

In the next section we now implement a detection mecha-
nism that measures how much ICS parameters change over
time with respect to the DTMC we just built.

7. DETECTION MECHANISM
During the learning phase, a sequence-aware NIDS uses

the techniques shown in Section 6 to build a model of regular
behavior. Our assumption is that no malicious activity has
yet been performed until this point, i.e., the learning input
is free of malicious anomalies. During the detection phase
we now search for unknown or uncommon patterns that are
effects of semantic or sequence attacks carried by intruders.

7.1 Targeted Anomalies
Targeted anomalies can be of three types:

• Unknown State: relates to a Markov chain state cre-
ated during the detection phase that does not appear
in the model. This anomaly can be the effect of a se-
mantic attack when an event has known attributes (at-
tributes shown by different Markov chain states mod-
eled during the training phase) but attributes do not
match correct or plausible values (e.g. out-of-bound
physical measurements).

• Unknown Transition: relates to a Markov chain transi-
tion that has not appeared in the training phase. This
anomaly can be the effect of an order-based sequence
attack when such a transition links two or more events
whose effects together cause damage to either the con-
trol or the physical process (e.g., a specific sequence of
control operations as showed in [8]).

• Unknown Probability : relates to known Markov chain
states and transitions whose related probabilities dif-
fer (by at least a value of θ) with respect to the one
detected during the training phase. This anomaly can
be the effect of a time-based sequence attack when the
repetition (or the lack) of occurrences of two or more
connected events cause damage should cause damage
to the ICS (e.g., the repetition of two conflicting events
as shown in [24]).

While identifying the aforementioned anomalies, the de-
tection algorithm has to avoid the following false positives:
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Figure 2: DFA modeling algorithm (phase 1)

Figure 3: DFA modeling algorithm (phase 2)

• Unknown but Correct State: relates to an “Unknown
State” anomaly caused by an event that is not danger-
ous for the system under control. This can occur in
case of uncommon user operations or changes either
in the control or physical parameters. A S-IDS should
be able to identify such a situation as anomalous but
label it as “harmless”.

• Unknown but Correct Transition: relates to an “Un-
known Transition” anomaly caused by a new link be-
tween two events that does not interfere with the cor-
rect functioning of system processes. This can occur
in case of event delays or user interferences within con-
trol or physical processes. As in the previous case, an
S-IDS should be able to identify anomaly’s inoffensive
nature.

We argue that it is unlikely to have many false positives
related to “Unknown Probability” anomalies. This mainly
comes from the robustness of such a parameter. Substantial
changes in the probability values of a Markov chain mean
a considerable modification in the way events are correlated
within the system under control. Actions of this kind cannot
be frequent. For this reason a S-IDS should always notify
“Unknown Probability” anomalies.

Finally, it is worth noting that aforementioned false posi-
tives are mainly related to the training time. The more the
S-IDS is able to train (the more data it acquires on correct
events and patterns) the more it will be able to distinguish
a malicious activity.

7.2 Detection algorithm
In the detection phase we evaluate differences between

trained DTMCs and DTMCs built up during detection. The
detection mechanism flags as “anomalous” a DTMC state
created in the detection phase that does not match with
any state of a DTMC created in training phase. The same
check is performed by looking for new transitions (between
known states). Finally, given a known DTMC state (a state
included in one of the training models), the detection al-
gorithm looks at its transition set and computes the differ-
ence between the probability values measured in the learn-
ing phase and the new ones. In the same way, given a
known DTMC transition, the detection algorithm compute
the difference between the probability values measured in
the learning phase and the new ones. This two distances are
defined as follows:

dS =

∑
t∈T

|ptdetection − ptlearning |
2

(1)

dT = |ptdetection − ptlearning | (2)

where:

- T is the set of transitions belonging to state S

- ptdetection is the probability value of transition t on
detection phase

- ptlearning is the probability value of transition t on
learning phase if such transition exists (0 otherwise)
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The result of both Equations 1 and 2 is always in the range
of [0, 1].

The detection procedure based on DTMC state distances
defines a threshold θ. If the result of Equations 1 or 2 ex-
ceeds θ, the detection mechanism triggers an alert to the user
showing the involved DTMC state and its semantic mean-
ing. The proper definition of the threshold value strongly
impacts the performance of a “sequence-aware” NIDS. If θ
is too high the accuracy of the NIDS increases (fewer false
positives) but its comprehensiveness decreases (more false
negatives). On the other hand, if θ is too low the resulting
high number of false positives is likely to make the NIDS
ineffective. The threshold value also depends on the nature
of the environment in which the NIDS is working. Control
systems that show higher variability in the communication
patterns will need higher thresholds as well. Our later ex-
periments will discuss selection of an appropriate θ.

Finally, it is worth noting that the detection algorithm can
work both offline (e.g., on an early captured network trace)
and online (i.e., running on live systems). Offline detection
takes place only at the end of the traffic analysis. Once
the NIDS goes through all the network frames it builds the
DTMC and compute all the distances. Online detection re-
quires instead a further refinement. In fact, the DTMC is
progressively populated as the network frames reach NIDS
sensors. At the beginning the number of jumps and transi-
tion in the DTMC is necessarily low. This likely causes the
probability values to diverge from those observed during the
learning phase. For this reason, online detection needs to
wait a reasonable amount of time τ such that the number
of network frames observed in the detection phase is compa-
rable with the number of frames captured and used in the
learning phase.

7.3 Enhancing detection
To improve the detection algorithm we decide to leverage

information of the infrastructure and the physical process
beyond.

7.3.1 Event Importance
Not all the events have the same importance within a sys-

tem. Different messages, commands, and values have differ-
ent impact on controlled systems. As a consequence, some
messages, commands, and values are more likely to be used
within semantic attacks. If this information is known, it is
possible to enhance detection mechanisms by focusing the
analysis on just the “important” events. A S-IDS that lever-
ages this information will react differently if an anomaly re-
lates to an “important” or an “unimportant” event and will
trigger an alert on the second only if the change is very high.
This mechanism, if correctly implemented, can significantly
reduce the number of false positives.

Evaluating the importance of an event requires a good
knowledge of the system under control. For this reason, the
most reliable way to set importance values is to leave the de-
cision to a human operator. However, the number of choices
that a human operator can take is probably very limited with
respect to the amount of events a S-IDS will process. There-
fore, we propose two different (yet inter-operable) ways to
apply and use importance values within models.

The first approach relies on making some a priori assump-
tions on the importance of some events. In the network com-
munication example, we can roughly divide ICS messages

into two categories: “monitoring” messages and “control”
messages. The former category groups together messages
that are used to gather information about the status of a
system. The second one includes all the messages used to
change this status and directly take action on the system.
From the attacker’s perspective we argue that “command”
messages are more important than “monitoring” ones.

This is due to our threat scenario. As described in Sec-
tion 1, the goal of the attacker is to damage the infrastruc-
ture by subverting the control process. To do that, the
attacker needs to exploit messages that interfere with the
control process and thus, change its status. For this reason,
in this scenario, we could tag DTMC states that represent
”write”or ”execute”operations as“important”, while tagging
all the others as ”unimportant”.

The second approach relies on the presence of some events
already tagged as “important” and on making assumptions
on the others based on their proximity with such“important”
events. In the case of DTMC model, the importance of some
states is transmitted and distributed to the others according
to the probability transitions.

As example, we define an algorithm that measures the de-
gree of importance of every state of the DTMC from a given
subset of “important” DTMC states (Algorithms 2 and 32).

Algorithm 2: calculateImportance()

forall the state ∈ DTMC do
visitedStates ← state;
p = 1;
calculateImportance(state, p, visitedStates);

Algorithm 3: calculateImportance(state, p, visited-
States)

probability = 0;
forall the s ∈ neighbors( state) do

if s ∈ importantStates then
probability += p * probability(state,s);

else if s ∈ visitedStates then
visitedStates ← s;
probability += calculateImportance(s,

probability, visitedStates)

If the concept of “importance” is used, Formula 1 and 2
modify as follows:

d = ws ·
∑
t∈T

wst ·
|ptdetection − ptlearning |

2
(3)

dT = wsource · |ptdetection − ptlearning | (4)

where:

- ptdetection and ptlearning are still the probability val-
ues of transition t on detection and learning phases
respectively

2In Algorithm 3 the variable probability represents the sum
of the probabilities to arrive to an “important” state starting
from state.
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Figure 4: Training model example

Figure 5: Detection model example

- ws is the “importance” of the state under analysis

- wst is the “importance” of the neighbor state linked
through transition t

- wsource is the “importance” of the state to which t be-
longs

The result of Formula (1) is also in the range of [0, 1] if
the maximum value of importance is 1. E.g., we can as-
sign 1 to the “important” states and 0 to the others and
run Algorithms 2 and 3 with the assurance that all resulted
importance values will still be defined in [0, 1].

7.3.2 Event semantics
In this work we propose algorithms that use semantics to

model events. However, when it comes to alerting anomalies,
the detection mechanism just verifies if a state or a transition
are included in a training model and it computes weighted-
distance between known DTMC states.

A further semantic analysis of an anomalous state (or
transition) has a twofold value. First it can force the S-
IDS to revise the result and to drop the alarm (e.g., if the
anomaly does not fit the DTMC but fits system’s expected
behavior at a higher level of abstraction). Second it allows
the operator who is reacting to the alarm to better under-
stand the context in which such an alarm has been raised.

Let us suppose we want to model the behavior of a vari-
able that represents a temperature. DTMC’s states can be
defined as intervals of n degrees (e.g., State “A” represents
[0◦, 10◦], State “B” represents [10◦, 20◦], etc.). The value of
the variable ranges between 0◦ and 100◦. Figure 4 shows a
possible DTMC built on this hypothesis. Furthermore, let
us suppose that during the detection phase two anomalies
are present leading to two new transitions in a detection
model (Figure 5).

According to the detection algorithm, the two anomalies
have the same detection score. However a further seman-
tic analysis of such transitions can help the system to rank
the two anomalies and to give a better suggestion to the
operator. The two transitions are, in fact, very different
in meaning as one concerns a temperature increase of ∼20◦

while the other represents an increase of ∼100◦. While the
first anomaly can be explained by an imprecise sensor or a

delay in the update of the variable’s value, the same consid-
erations do not stand for the other. A comparative analysis
on the transitions would easily show that the average varia-
tion in temperature is at most ∼10◦. This would make the
first anomaly to be very close to a “valid” behavior while
emphasizing the distance between the second anomaly and
the rest of the known transitions. An S-IDS could then de-
cide to ignore the anomaly or to forward such information
to the operator.

A general application of such an approach is limited due
to the heterogeneity of environments and events an S-IDS
has to face. However, there are situations that allow the
presence of a further level of analysis involving the semantic
meanings of specific events. We consider the addition of
“semantic distance computation algorithms” (both for states
and transitions in the case of a discrete-time Markov chain)
as a valuable research direction to improve the effectiveness
of a S-IDS.

7.3.3 Transition timing
An effective detection on sequences of events strongly de-

pends on transitions’ time variability. The more events fol-
low standard time patterns the easier is to spot anoma-
lies. Attributes ATE and σATE provide information on how
much a specific transition changes over time and should be
used as a reference point to decide if performing detection
on the related events. Transitions with low time variability
relate to the automated behaviors of control processes. On
the other hand, transitions with high time variability can
be the effect of human behaviors and should be filter out
completely during the detection phase. In [3] we show the
effects that human behavior causes on DTMC models of ICS
communications.

8. EVALUATION
As introduced in Section 1, we test our approach on data

coming from real industrial deployments. What follows shows
results gathered by our S-IDS from a water treatment and
purification facility that uses Modbus communication. The
purpose of this test is to first evaluate whether our detection
approach may generate too many false positive alerts. Af-
terwards we introduce some artificial example attacks into
the trace to show the effectiveness against attacks.

8.1 Sequencing and Modeling
Over the four hours of training, the infrastructure shows

20 different Modbus connections: 9 PLC-to-RTU, 3 PLC-
to-PLC, and 6 PLC-to-SCADA Server, 1 SCADA Server-
to-SCADA Server and 1 HMI-to-SCADA Server. Figure 6
represents the result from our modeling approach applied to
a communication involving a PLC and the SCADA server.

Most of the Modbus connections involve just one or two
Modbus requests and responses sent periodically (e.g., once
every second). Connections between PLCs and SCADA
Server have instead higher variety of messages. Not all the
observed transitions have the same probability. For exam-
ple, Figure 6 shows that most of the transitions have low
probabilities (thiner lines) while a small set of them have a
probability greater than 0.9 and form a clear path through
all the states of the model (thicker lines). The sequence
of events given by transitions with high probability breaks
occasionally due to random delays or human interventions.
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Figure 6: Modbus communication model between PLC “A”
and the SCADA Server

8.2 Detection Mechanism
We run our detection algorithm (Equations 1 and 2) against

1 day of traffic captured on the same network. We mini-
mize the threshold θ to 0.1 to alert any significant change
within the transition probability sets. No malicious traffic
is included in the dataset, therefore this test verifies detec-
tion resilience against false positives. The S-IDS raises 211
alerts (Table 1) with a rate of 1 alert every ∼40 minutes.
96% of the false positives are generated by a new transition
due to a network delay on a “read” operation within one of
the aforementioned connections between PLCs and SCADA
server. Other anomalies are: six new states (write messages
that were not observed in the training phase), two anoma-
lous states and an anomalous transition (belonging to one of
the previous anomalous states). The two anomalous states
relates to a read and a write operation. The read event
is alerted because of small changes within its transition set
(transition probabilities changed within a maximum of dt
= 0.05). Instead, the write operation is alerted because of
the detection score of the anomalous transition (dt = 0.2).
Thanks to the operators we observe that this anomaly is
due to a change in the status of a pump. Such a change was
already observed in the training. However, the low number
of events in that specific Modbus communication caused a
probability value to increase substantially.

Unknown
State

Unknown
Transition

Unknown
Probability

Alerts 6 202 3

Table 1: Alert distributions with non-malicious traffic

To prove the effectiveness of the S-IDS we inject two se-
quence attacks into the traffic. Discussing with the opera-
tors, we decide to perform the following two attacks: 1) we
invert two write messages concerning the control of two dif-
ferent pumps and 2) we trigger several start and stop com-
mands on the same pump. The choice of these two attacks
follows the two threat scenarios presented in Sec. 2.2. Due
to the criticality of the water infrastructure we were not al-
lowed to test the attacks on the real network. For this reason

we replay the same 24 hours of real traffic plus the attacks
to the intrusion detection system. Also in this case the S-
IDS raises the previous 211 false positives for the reasons
discussed above. In addition, the S-IDS raises also eight
correct alerts detecting both the attacks. The first attack
causes the presence of two new transitions (one following
the other on the targeted write events). Figure 7 shows the
first attack modeled in the DTMC. The second attack causes
two anomalous states, a new transition and three anomalous
transitions with a substantial change in the probability val-
ues (transition linking the “start” event to the “stop” one
increases from ∼0.001 to ∼0.99). Figure 8 shows the second
attack and its effect on the DTMC. It is worth noting that
there is a difference between the new transitions generated
by the two sequence attacks. In the first case, transitions
have small probability while in the other case the new tran-
sition has a high probability. This is due to the differences
between the attack scenarios. In fact, the first scenario relies
on subverting a specific operation known to be potentially
dangerous while the other scenario relies on repeating the
same operation multiple times.

Figure 7: Modbus communication model between PLC “B”
and the SCADA Server

Figure 8: Modbus communication model between PLC “C”
and the SCADA Server

8.3 Enhancing Detection
To reduce the rate of false positives we use one of the en-

hancing methods proposed in Section 7.3. We argued that
an attacker is likely to target communications that involve
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commands or write operations. Therefore, we define as “im-
portant” any command and write operation observed in the
communications and assign them a “value of importance”
equal to 1. Furthermore, we run Algorithms 2 and 3 to
compute the “value of importance” of any other event.

With this new setup we repeat the two tests discussed
above. Within the 24 hours of clean traffic the S-IDS raises
just 9 false positives instead of 211, with a rate of 1 alert ev-
ery two hours and a half. This result definitely improves the
usability of the intrusion detection system. However, we are
aware that, from a practical point of view, such a rate can
still be difficult to handle for an operator. Likewise, when
adding the malicious traffic, we get 17 alerts. The eight
alerts identified before as effects of the sequence attacks are
confirmed with the enhanced detection. It is worth not-
ing that detection values computed for the new anomalies
of the first attack were already close to the threshold and,
thus, close to be considered non-malicious. Such result is
confirmed by the new test only because the involved states
are rated as “important” (“value of importance” equal to 1).
Any other value smaller than 1 would cause the S-IDS to
ignore the two new transitions.

These results show the impact that the “value of impor-
tance” has on detection. Mistakes in the assignment of such
values would strongly influence the effectiveness of the S-
IDS. In Section 7.3 we discussed a general approach to the
assignment of “values of importance”. However, specific in-
frastructure can benefit of different techniques. The goal of
the test was to prove that such enhancing techniques are
as effective as a human (e.g., the operator) is able to pro-
vide valuable information about the infrastructure and its
communications.

9. CONCLUSIONS & FUTURE WORK
This paper discusses sequence attack scenarios within in-

dustrial control systems and presents an approach to the de-
velopment of a sequence-aware intrusion detection system.

State of the art solutions against sequence attacks still
face some limitations. This is due to several reasons such as
identifying and analyzing the correct sets of information and
modeling them into proper data structures. Moreover, such
analysis must be robust against message delays and human
operations that can occasionally break the stability of ICS
communications.

In this paper, we propose a layered architecture to guide
the development of an S-IDS. This architecture encompasses
in-depth analyses of ICS data and leads to a comprehensive
description of devices’ behaviors over time. Furthermore, we
propose intrusion detection mechanisms aimed to identify
anomalies within models of accepted behavior. Finally, we
test our approach using real-world data traces gained from a
water treatment and purification facility. We show that our
S-IDS is able to correctly identify sequence attack instances
as well as keeping the number of false positives low.

In our next steps, we will try to identify an even more com-
prehensive set of detection mechanisms that can be used in a
broader variety of industrial control systems. As differences
between such infrastructures can be substantial (e.g., phys-
ical processes, control strategies) we need to consider more
data from a variety of sources. Furthermore, anomalies in
communication patterns, logs, and variables’ values do not
always relate to attacks but can be generated by a number
of other causes (e.g., human intervention, device failures,

etc). As shown in [3] temporal and statistical analysis can
be used to improve IDS capabilities to recognize the cause
of an anomaly.

Finally, it is worth noting that leveraging semantic of ICS
communications and parameters is a powerful way to en-
hance security tools’ knowledge of the environment in which
they are deployed and, therefore, improve their effective-
ness. We will also continue to analyze more semantic attack
scenarios and testing S-IDS implementations within further
real environments.
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