
Chapter 4

MODELING MESSAGE SEQUENCES
FOR INTRUSION DETECTION
IN INDUSTRIAL CONTROL SYSTEMS

Marco Caselli, Emmanuele Zambon, Jonathan Petit and Frank Kargl

Abstract Compared with standard information technology systems, industrial
control systems show more consistent and regular communications pat-
terns. This characteristic contributes to the stability of controlled pro-
cesses in critical infrastructures such as power plants, electric grids and
water treatment facilities. However, Stuxnet has demonstrated that
skilled attackers can strike critical infrastructures by leveraging knowl-
edge about these processes. Sequence attacks subvert infrastructure op-
erations by sending misplaced industrial control system messages. This
chapter discusses four main sequence attack scenarios against industrial
control systems. Real Modbus, Manufacturing Message Specification
and IEC 60870-5-104 traffic samples were used to test sequencing and
modeling techniques for describing industrial control system commu-
nications. The models were then evaluated to verify the feasibility of
identifying sequence attacks. The results create the foundation for de-
veloping “sequence-aware” intrusion detection systems.

Keywords: Industrial control systems, sequence attacks, intrusion detection

1. Introduction

Critical infrastructure assets such as power plants, electric grids and wa-
ter treatment facilities have used control systems for many decades; however,
until the turn of the century, they were primarily standalone systems. The
Internet and network convergence have brought about many changes to criti-
cal infrastructure assets, the most important being their transformation from
standalone systems to highly interconnected systems. This transformation has
introduced advantages and disadvantages. On one hand, it facilitates the re-
mote monitoring and management of industrial processes. On the other hand,
traditional information technology attacks can be launched from afar, includ-

c© IFIP International Federation for Information Processing 2015
M. Rice, S. Shenoi (Eds.): Critical Infrastructure Protection IX, IFIP AICT 466, pp. 49–71, 2015.
DOI: 10.1007/978-3-319-26567-4 4

50 CRITICAL INFRASTRUCTURE PROTECTION IX

ing over the Internet, to compromise industrial control systems and the critical
infrastructure assets they manage.

This is the case of denial-of-service and distributed denial-of-service attacks.
These attacks can target a specific device in an industrial control network
and flood it with a massive number of packets until it is no longer able to
operate normally. This can reduce or eliminate operator situational awareness
and eventually impact the coordination and control of infrastructure assets,
potentially affecting the larger infrastructure and connected infrastructures,
leading to serious consequences to industry, government and society.

Another example involves semantic attacks. Unlike standard cyber attacks,
semantic attacks exploit knowledge of specific control systems and physical
processes to maximize damage. Stuxnet [4, 16] is probably the most well-
known attack of this type. Meanwhile, numerous reports from the U.S. ICS-
CERT have described exploits on industrial devices, such as programmable
logic controllers and SCADA servers, that are triggered by carefully-crafted
messages (see, e.g., [9]). Sequence attacks are a type of semantic attack. Instead
of using modified message headers or payloads, these attacks employ misplaced
messages in industrial control system communications to cause targeted devices
to malfunction or even strike directly at physical processes.

Detecting sequence attacks relies on two assumptions: (i) industrial control
system communications can be monitored; and (ii) industrial control system
communications are generally regular over time. Traditional industrial tech-
nology networks rarely have regular network traffic due to their high variability
(e.g., web users downloading different kinds of content from the Internet or
interacting among themselves). However, even if an industrial control network
maintains the same topology (i.e., a device always communicates with the same
devices) [6], no checks are performed – nor is evidence is maintained – that the
same sequences of messages are present in the inter-device communications.

Another problem is that traditional network intrusion detection systems gen-
erally search for unusual messages and rarely focus on message sequences, caus-
ing sequence attacks to go unnoticed. Specification-based intrusion detection
systems can deal with sequence attacks based on the misuse of communications
protocols. However, they require a precise and comprehensive documentation
of system operation (e.g., the TCP/IP protocol suite [22]).

This chapter describes several sequence attack scenarios against industrial
control systems. Real Modbus, Manufacturing Message Specification (MMS)
and IEC 60870-5-104 traffic samples are used to evaluate the feasibility of se-
quence analysis and detection. Indeed, the goal is to identify all the traffic data
needed to model and analyze the behavior of industrial control protocols over
time. Furthermore, the feasibility of “sequence-aware” detection is investigated
by identifying model-related information that can be leveraged to detect ma-
licious activities. The implementation of sequence-aware intrusion detection is
left as future work because the objective of this research has been to identify
plausible sequence detection methodologies that can be used to differentiate
attack traffic from normal traffic in industrial control systems.

Caselli, Zambon, Petit & Kargl 51

2. Background

Industrial control systems include supervisory control and data acquisition
(SCADA) systems, distributed control systems (DCSs) and generic control sys-
tems such as skid-mounted programmable logic controllers (PLCs) [23]. Indus-
trial control networks usually interconnect a field network and a process net-
work. The field network hosts devices that are directly connected to the physical
process. The process network hosts the servers that supervise the control of
the physical process. Field devices include sensors, actuators, remote terminal
units and programmable logic controllers. Process networks include SCADA
servers, human-machine interfaces (HMIs) and engineering workstations.

Industrial control systems use special communications protocols on top of
TCP/IP, open protocols like Modbus, MMS and IEC 60870-5-104 and propri-
etary protocols such as Siemens S7. This research focuses on Modbus, MMS
and IEC 60870-5-104 because, in addition to being widely used, these proto-
cols demonstrate different communications patterns and behaviors (e.g., syn-
chronousvs. asynchronous communications, and pushing vs. polling paradigms).

Modbus: This application layer protocol uses a polling client/server
scheme [19, 24]. SCADA servers (i.e., masters) always act as clients and
initiate communications by sending requests to programming logic con-
trollers (i.e., slaves) and wait for responses. Common Modbus commands
can, for example, instruct a server to read or write values in its memory-
mapped registers.

Manufacturing Message Specification (MMS): This protocol im-
plements the seven layers of the ISO/OSI stack, even when it operates on
top of TCP/IP [12, 13]. MMS is a client/server protocol with synchronous
or asynchronous communications patterns. The protocol defines read and
write control operations for a set of standard objects, a set of messages
to be exchanged and a set of encoding rules that map the messages.

IEC 60870-5-104 (IEC104): This application layer protocol operates
on top of TCP/IP [10, 11]. The protocol mostly uses asynchronous bal-
anced or unbalanced data transfer modes. In the balanced mode, a mas-
ter or slave can initiate communications while the unbalanced mode only
allows a master to initiate communications, In the remainder of this chap-
ter, the IEC 60870-5-104 protocol is referred to as IEC104.

3. Sequence Attacks

This section presents four sequence attacks that are classified according to
the targeted industrial control system component (i.e., device or physical pro-
cess) and the type of compromise (i.e., manipulation of the timing or order of
messages).

With regard to the first dimension (i.e., attack targets), this section dis-
tinguishes between attacks targeting the implementations of protocol stacks in

52 CRITICAL INFRASTRUCTURE PROTECTION IX

devices and attacks targeting the industrial processes controlled by the devices.
Specifically, the first, and more traditional, class of attacks exploit vulnerabil-
ities in protocol stack implementations. The second class of attacks, which
are specific to industrial control systems, attempt to divert or take control
of industrial processes by leveraging the lack of integrity and authentication
mechanisms. To take control of a process, an attacker may either reprogram
the logic executed by a programmable logic controller [18] (e.g., as in the case
of Stuxnet), or directly control the process from the network using the same
control messages used by legitimate operators. This research focuses on the
second type of attacks that are less explored in the literature.

With regard to the second dimension, this research distinguishes between
attacks that send messages or commands in incorrect (malicious) order and
attacks that send messages or commands with incorrect (malicious) timing.
The first type of attacks violate the state machines that underlie application
protocols or send sequences of messages or commands that move processes to
unsafe states. The second type of attacks leverage the limitations of embedded
devices in processing input data or exploit weaknesses of process equipment
(e.g., motors or valves) by changing their operational states in ways not foreseen
by their manufacturers.

Based on these two dimensions, four attack scenarios are described and a
simple, yet realistic, example is provided for each of the four scenarios:

Message-Order-Based Device Compromise: The majority of ap-
plication level protocols used to manage programmable logic controllers
provide for loading and storing logic programs from engineering worksta-
tions with network connectivity to programmable logic controllers. The
load and store functionalities are typically achieved by sending sequences
of messages. The sequence of messages for uploading a logic program to
a programmable logic controller typically involves: (i) locking the pro-
grammable logic controller; (ii) stopping the running program(s); (iii)
deleting the existing program(s); (iv) transferring the program code to
the programmable logic controller; (v) creating new program(s) with the
new program code; (vi) starting the new program(s); and (vi) unlocking
the programmable logic controller. Each step is achieved by sending one
of more messages to the programmable logic controller. Experiments in
an industrial control laboratory environment have revealed that it is pos-
sible to attack some programmable logic controllers merely by sending
some of these messages in an inconsistent order. For example, sending a
(valid) start program message when the program is still running causes an
error that is not properly handled by the programmable logic controller
firmware, which causes the programmable logic controller to crash.

Message-Order-Based Process Compromise: Carcano et al. [20]
describe an example attack scenario for a process system comprising a
pipe with high pressure steam. The pressure is regulated by two valves
(V1 and V2). An attacker with the appropriate access sends a write

Caselli, Zambon, Petit & Kargl 53

message to the programmable logic controller to completely close valve V2
and another write message to completely open valve V1. This maximizes
the flow of steam into the pipe and maximizes the pressure in the pipe
because the incoming steam cannot exit the pipe. Both these commands
are perfectly legal when considered individually, but they bring the system
to a critical state because they are sent in the wrong sequence.

Message-Timing-Based Device Compromise: Many embedded de-
vices used in industrial control systems have limited computing capabili-
ties and have weak protocol stack implementations (because they incor-
rectly assume that all devices use the protocols correctly). As a result,
it is fairly easy to mount attacks that exhaust the resources of these
embedded devices by simply flooding the network with (valid) protocol
messages (e.g., TCP SYN messages). However, laboratory experiments
conducted as part of this research have revealed that the same effects
can be achieved using application-level messages. This is particularly
true for programmable logic controllers that use UDP-based application
protocols. Flooding these devices with application-level messages that
require expensive operations (e.g., diagnostic functions) quickly exhausts
programmable logic controller resources, compromising their ability to
complete their scan-loops in real time and eventually leading to complete
resets of the devices.

Message-Timing-Based Process Compromise: A report by the U.S.
President’s Commission on Critical Infrastructure Protection [21] de-
scribes an example attack scenario involving a water distribution facility.
In this scenario, major control valves on the water pipeline are rapidly
opened and closed to cause water hammer, resulting in a number of si-
multaneous water main breaks. Such an attack could be carried out by
rapidly sending a sequence of write messages that direct programmable
logic controllers to open and close the valves.

4. Sequences and Sequence Events

Detecting sequence attacks requires the ability to extract a sequence of mes-
sages from network traffic and identify information that is needed to construct
intrusion detection systems. This section investigates the process of transform-
ing a set of network frames into ordered lists of network events that represent
device communications.

The easiest way to define an event in the context of network communications
is to consider all the traffic frames one by one. However, all traffic frames are
not equally important and not all frames need to be included in a sequence.
Moreover, all the attacks presented in Section 3 involve a single connection be-
tween a sender and a receiver (i.e., one TCP stream). Therefore, it is necessary
to group traffic frames into communications channels. The following definitions
are used in the ensuing discussion:

54 CRITICAL INFRASTRUCTURE PROTECTION IX

Definition 1: A sequence {mtn} with n ∈ [0,∞[is a time-ordered list of
application-level messages (tn < tn+1) exchanged over a network channel es-
tablished between two devices that use a specific communications protocol.

Because the Modbus, MMS and IEC104 protocols have different communica-
tions types (e.g., synchronous vs. asynchronous) and communications patterns
(e.g., pushing vs. polling), Definition 1 is redefined for each protocol. Note that
the term m is substituted by the sequence event e that details the properties
and attributes of each protocol.

Definition 2: A sequence of Modbus events is a time-ordered list of events
{etn} where e is a three-tuple <ID, Code, Data> derived from two messages
(mReq

tn ,m
Res

t>tn).

Note that ID denotes the transaction identifier, Code indicates the type of
operation performed and Data represents the information carried by Modbus
requests mReq and responses mRes.

Definition 3: A sequence of MMS events is a time-ordered list of events
{etn} where e is a four-tuple <ID, PDU, Service, Data> derived from two
messages (mReq

tn ,m
Res

t>tn) in the case of synchronous communications, and
from mtn in the case of asynchronous communications.

Note that ID denotes the invoke identifier, PDU indicates the type of com-
munications (e.g., initiate, request, response, error, etc.), Service describes the
operation requested or performed (e.g., read, write, etc.) and Data represents
the information carried by MMS requests and responses.

Definition 4: A sequence of IEC104 events is a time-ordered list of events
{etn} where e is a three-tuple <Format, Service, Data> derived from two mes-
sages (mReq

tn ,m
Res

t>tn) in the case of synchronous communications, and from
mtn in the case of asynchronous communications.

Note that Format denotes the format of the messages, Service defines the
performed service and Data represents the information carried by IEC104 mes-
sages.

5. Modeling Message Sequences

Section 4 described how to transform network traffic traces into time-ordered
lists of events. The next step involves the modeling of message sequences to
perform communications analysis and identify sequence attacks. A discrete-
time Markov chain (DTMC) is used to model communications patterns and
protocol behaviors. The modeling is done for two reasons:

First, a flexible definition of event is needed that does not necessarily
consider all the attributes used to build the sequence (e.g., ID, Code,
Data). For example, two Modbus events that only differ in their trans-
action identifier (ID) are considered to be the same event because a

Caselli, Zambon, Petit & Kargl 55

Algorithm 1 : DTMC modeling of sequences.

1: for all etn ∈ sequence do
2: StateDTMC ← extractAttributes(etn);
3: if StateDTMC ∈ DTMC then
4: update(StateDTMC);
5: else
6: add(StateDTMC , DTMC);
7: end if
8: if TransitionpreviousState,StateDTMC ∈ DTMC then
9: update(TransitionpreviousState,StateDTMC);

10: else
11: add(TransitionpreviousState,StateDTMC , DTMC);
12: end if
13: previousState ← StateDTMC ;
14: end for

transaction identifier does not determine the meaning of a message or the
significance of an event itself. DTMC states are used as sets of sequence
events that share the same semantic meaning.

Second, it is necessary to identify temporal consequent events. DTMC
transitions are used to: (i) indicate the strength of the relationship be-
tween an event and its successor (e.g., how many times a state follows
another); and (ii) understand if the relationship changes over time (e.g.,
the time interval between two states remains constant over time). A
transition between two states A and B indicates an “episode of conse-
quentiality” between two events belonging to A and B, respectively.

Modeling industrial control system communications with DTMCs has some
advantages over using other modeling techniques such as n-grams or determin-
istic finite automata. Analysis using n-grams requires communications to be
split into subsequences of messages of length n. Therefore, a model of industrial
control system communications would be defined by the statistical distribution
of the n-grams included in the entire sequence of messages. The resulting anal-
ysis would fail to identify subsequences of messages larger than n that remain
the same during the entire communications. Modeling communications using a
deterministic finite automaton would allow sequences of any length to be iden-
tified, but it would not be suitable for stochastic events (e.g., message delays).
Without considering the probabilities of event occurrence, it would be impos-
sible to evaluate the importance of transition functions and, consequently, to
assess the correct behavior of industrial control system communications.

The construction of a DTMC is independent of the modeled protocol and is
completely automated. From an implementation point of view, the algorithm
used to build a DTMC reads a sequence of events one by one and populates
the model. For every event in the sequence, the algorithm either assigns it to a

56 CRITICAL INFRASTRUCTURE PROTECTION IX

state or creates a new state if the event does not match the attributes of a state
already in the model. Moreover, in each step, the algorithm adds or updates a
transition function that links the previously-visited state to the current state.
Algorithm 1 formalizes the DTMC modeling process.

Every state S is defined by a five-tuple <Data, T ype,#Events, FTS, LTS>
where Data denotes the information carried by events stored in S, Type indi-
cates the type of events included in S (e.g., requests and responses, asyn-
chronous requests), #Events denotes the number of events included in S, FTS
(first time seen) is the timestamp of the first event in S and LTS (last time
seen) is the timestamp of the last event in S.

Every transition T from a source state A to a destination state B is de-
fined by a six-tuple <TP,#Jumps, FJ, LJ,ATE, σATE> where TP (transi-
tion probability) is the ratio of the number of jumps from A to B to the total
number of jumps from A to any other state in the DTMC, #Jumps represents
the number of jumps from A to B, FJ (first jump) is the timestamp of the
first jump in T , LJ (last jump) is the timestamp of the last jump in T , ATE
(average time elapsed) is the average time between two consequent events of A
and B, and σATE is the standard deviation over all the intervals between the
two consequent events of A and B.

To illustrate how the DTMC modeling process works, consider the following
sequence of events:

1. MMS Initiate Request/Response Event: Invoke ID = –, PDU = Initi-
ate, Service = –, Data = mmsInitRequestDetails, Timestamp = 15 Jun 2014
17:14:12.79

2. MMS Confirmed Request/Response Event: Invoke ID = 1, PDU = Con-
firmed Request/Response, Service = write (5), Data = octet-string (9) 00,
Timestamp = 15 Jun 2014 17:14:12.973

3. MMS Confirmed Request/Response Event: Invoke ID = 2, PDU = Con-
firmed Request/Response, Service = write (5), Data = octet-string (9) 00,
Timestamp = 15 Jun 2014 17:14:13.059

4. MMS Confirmed Request/Response Event: Invoke ID = 3, PDU = Con-
firmed Request/Response, Service = write (5), Data = octet-string (9) 00,
Timestamp = 15 Jun 2014 17:14:13.311

Figure 1 shows the DTMC obtained by applying the modeling algorithm.
The first event of the sequence creates a DTMC state of type Initiate Re-
quest/Response representing MMS initialization messages (state A). The sec-
ond event of the sequence creates another state in the model of type Confirmed
Request/Response that represents MMS messages used to write an octet-string
at 00 (state B). At this point, the model also has a transition between the two
states that describes the sequential nature of the two events of the sequence
(Transition 1). The third event of the sequence has the same attributes as the
second event and, thus, increases the attribute #Events of state B. However, a
new transition connects state B in a self-loop to show the new relationship ob-
served in the sequence. Finally, the fourth event of the sequence is still part of

Caselli, Zambon, Petit & Kargl 57

Figure 1. DTMC modeling algorithm example.

state B because it has the same attributes as the second event of the sequence.
Since the model already has a transition that links state B in a self-loop, the
algorithm only increases the #Jumps attribute of this transition.

6. Experiments and Analysis

This section analyzes the DTMCs generated from real Modbus, MMS and
IEC104 traffic. The network traces were captured at three utilities. The Mod-
bus traffic was obtained from the control network of a water treatment plant.
The MMS traffic was obtained from a gas storage and pipeline infrastructure;
log files of the SCADA servers at this facility were also obtained. The IEC104
traffic was obtained from a gas distribution system and refers to secondary
substations for distribution.

The timeframes of the data range from one day (MMS) to five days (Modbus
and IEC104). It is worth noting that, during the traffic captures, no constraints
were imposed on operations. All three infrastructures were running normally
and operators were free to perform their tasks. The three samples represent the
most realistic use cases in which a security system could be deployed, tested
and tuned.

Figure 2 shows the topologies of the three networks tested. Sequencing and
modeling operations were implemented on top of Tshark parsing services, which
eliminated problems related to TCP stream reconstruction (e.g., retransmission
and segment reordering). The Tshark output for a specific TCP stream was
forwarded to a custom tool that selected the information needed to transform
a message in a sequence event, and concatenated events to create sequences.
At the same time, the modeling algorithm constructed the DTMC representing
the sequence.

58 CRITICAL INFRASTRUCTURE PROTECTION IX

(a) Modbus network topology.

(b) MMS network topology.

(c) IEC104 network topology.

Figure 2. Network topologies.

Caselli, Zambon, Petit & Kargl 59

Figure 3. Modbus communications between SCADA server 140 and PLC 203.

6.1 Modbus

In the Modbus experiment, 47GB of traffic and more than 260M frames were
captured. Every communication between a programming logic controller and
remote terminal unit involved one Read Holding Register message sent in a loop.
For this reason, the analysis focused on the connections between the SCADA
server and the programming logic controllers. These TCP streams contained
about 43M frames and each related sequence contained about 10M events.
The generated models consisted of 21 to 22 states and a variable number of
transitions (between 172 and 291). As mentioned above, Read Holding Register
was the only message used, each message had a different set of addresses.

Figure 3 shows the Modbus communications between SCADA server 140
and programmable logic controller 203. Note that the models do not present
the sequences of states with periodic behavior. However, the analysis of the
DTMCs revealed the following outcomes:

Given the total number of possible transitions within a DTMC (calculated
by summing the possible edges #States × (#States − 1) and self-loops
#States), the observed transitions cover 40% to 60% of the domain. This
means that, on average, half of the transitions did not occur even after
five days of analysis.

Not all the transitions have the same probability. Figure 4 shows a link
with a transition probability higher than 0.7. Every involved transition
has more than 150K jumps. The results indicate that hidden sequentiality
exists even if it is disturbed by random delays. Only one-third of the
states have two transitions with probability higher than 0.25 (more than

60 CRITICAL INFRASTRUCTURE PROTECTION IX

(a) DTMC transitions with probability > 0.7.

(b) DTMC transitions with probability > 0.25.

Figure 4. Modbus communications between SCADA server 140 and PLC 203.

130K jumps) and the 30 transitions shown in Figure 5 cover 99.8% of the
jumps.

No self-loops exist. None of the states in the model has a transition that
goes back to itself. This means that no Read Holding Register operation
was performed twice in a row.

The transition distribution in the models is not uniform. Some states
have higher numbers of transitions than others.

Moreover, it was possible to identify clusters of states (see Figure 4) with two
properties: (i) each cluster has several edges that connect to states belonging

Caselli, Zambon, Petit & Kargl 61

to other clusters; and (ii) each cluster has a few edges that connect internal
states to each other and, among these edges, there is a path that connects all
the states of the cluster and that contains almost all the jumps performed in
the cluster (∼99.9998%).

These clusters denote the presence of several threads in the SCADA server
operating system process (one per cluster) that multiplex requests in the same
TCP stream. The task of each thread is to ask for a specific interval of registers.
This hypothesis explains the difficulty in finding clear sequences (each thread
can be randomly scheduled by the CPU) and the absence of some transitions
(threads are always created in a loop and operations within the same thread
are likely to be sequential).

6.2 MMS

In the MMS experiment, 4GB of traffic and more than 18.3M frames were
captured. TCP streams that connected the main programmable logic con-
troller (i.e., the device that coordinated all the field devices) to the other pro-
grammable logic controllers involved on average 2M frames. The generated
sequences consisted of about 600K events with models containing two to seven
states. The DTMCs had variable numbers of transitions that covered 35% to
75% of all the possible edges in the graphs. Models with the highest percent-
ages of transitions consisted of TCP streams with only Read Request messages
that were used to read two variables in the field programmable logic controllers.
These models had three transitions (one self-loop and two transitions connect-
ing the two states in each model). Models with higher numbers of states were
suitable for sequence modeling in most of the cases.

Figure 5(a) shows the communications model for the main programmable
logic controller and a field programmable logic controller. The model has seven
states and seventeen transitions. As in the Modbus experiments, there is a
path that involves eight of the seventeen transitions; this path covers 99.99%
of the jumps. Unlike the Modbus models, the MMS models show instances of
strict consequentiality (e.g., between the two read operations at the bottom of
Figure 5(a)). Although it is not known if altering the order of these two mes-
sages causes problems to the control process, it appears that their sequentiality
is enforced by the system and, for this reason, it is likely to remain the same
unless the control process changes.

The TCP streams that link the two SCADA servers to the main program-
mable logic controller include almost the same number of frames (1.9M) and
sequence events (570K). This data is comparable with the MMS TCP streams
discussed above. However, the related models change completely. The two new
models include about 280 states and 1,280 transitions (see Figure 6). This is
due to two reasons:

The number of different operations performed among the SCADA servers
and the main programmable logic controller is higher than the number of
operations performed among the programmable logic controllers.

62 CRITICAL INFRASTRUCTURE PROTECTION IX

(a) Complete DTMC.

(b) DTMC transitions with probability > 0.19.

Figure 5. MMS communications between the main PLC 151 and PLC 211.

The states in the new models mostly represent Read Unconstrained Ad-
dress operations and the implementation of unconstrained addresses is
proprietary. This causes every state to be identified by a byte string and,
as a consequence, only events that share the exact same information are
grouped together.

The correct parsing of Read Unconstrained Address operations would reduce
the number of states. However, it is worth noting that:

The percentage of performed transitions corresponds to 0.02% of all pos-
sible transitions. In the case of Modbus, the definition of a set of allowed
sequences would be much more restrictive.

Caselli, Zambon, Petit & Kargl 63

Figure 6. MMS communications between SCADA server 21 and PLC 151.

About 45% of the states have “univocal relationships” between two other
states (a state Y has a univocal relationship between states X and Z if
transitions from X to Y are always followed by transitions from Y to
Z; moreover, these states are often chained together). Such structures
highlight subsets of MMS messages with strong consequentiality (i.e.,
subsets of messages that always follow each other).

The model yields several clusters of states (see Figure 6). More precisely,
there is a densely-connected core with some smaller groups of states at
the edges. Most of the little clusters are linked to the core by a few
transitions that often involve only one jump.

These clusters are the measurable effects of human intervention. This hy-
pothesis is supported by the analysis of the process log file. First, human
operations timestamps were matched against the starting times of the
transitions. About 50% of the entries labeled as human operations were
recorded in the same time frames as when the transitions occurred. Sec-
ond, the time frames with no human operations were examined; almost
the same time gaps were observed for the transitions. Finally, it was ob-
served that the two time frames with the highest numbers of transitions of
this kind corresponded to the only two operations recorded as “suppress”
in the log file. According to plant operators, these operations correspond
to the manual termination of system alarms with a consequent reset of
several system control parameters to the “normal” state.

The analyses of Modbus and MMS traffic samples emphasize the differences
between programmable logic controller to programmable logic controller (or
remote terminal unit to remote terminal unit) and server to programmable

64 CRITICAL INFRASTRUCTURE PROTECTION IX

(a) SCADA server 102 and RTU 122 communications.

(b) SCADA server 102 and RTU 177 communications.

Figure 7. IEC104 communications.

logic controller (or server to remote terminal unit) communications. The models
demonstrate that the former type of communications exhibits fewer states and
transitions while the later usually has a greater variety of messages.

6.3 IEC104

In the IEC104 experiment, 51GB of traffic and more than 203M frames were
captured. TCP streams linking the SCADA server and the remote terminal
units were analyzed. These connections contained 70K to 96K frames and 13K
to 24K sequence events. As in the MMS experiments, the number of sequence
events did not depend on the number of frames.

Most of the models had a number of transitions that covered 20% to 33%
of all possible transitions. Figures 7(a) and 7(b) illustrate this case with TCP
streams of about 24K events. Figure 7(a) shows a model with six states and

Caselli, Zambon, Petit & Kargl 65

Figure 8. IEC104 communications between SCADA server 102 and RTU 105.

ten transitions while Figure 7(b) shows a model with fourteen states and 43
transitions. Both the models have two sets of states with different densities of
transitions. The group of states on the left involves different types of commands
and is responsible for the majority of transitions that do not show sequential-
ity. The other group of states on the right involves “single point information”
commands and shows some clear paths. As discussed in the case of MMS,
this portion of the model allows some assumptions to be made regarding state
sequences (e.g., consequentiality of single point information messages).

The model in Figure 8 corresponds to another server to remote terminal unit
TCP stream with fewer events (13K), but with a greater number of states (49)
and transitions (92). The percentage of transitions out of the total number of
possibilities is lower than in the previous cases (around 0.04%). The model
shows also several precise paths. The IEC104 results lead to the following
outcomes:

All the examples demonstrate specific parts of the model with no se-
quentiality. Messages that create these clusters are almost the same in
the three cases (e.g., TESTFR functions, Measured Value – Normalized
Value commands).

The remaining part of the model includes several definite sequences. The
analysis reveals that, despite the presence of different paths, the involved
states all relate to a precise sequence of addresses to be read. Every state
collects single point information commands with a different number of
object addresses. The set of object addresses at the end of every path is
always the same as well as the order in which they are used.

Finally, it is finally worth noting that the analysis of the IEC104 traffic
reveals a lower number of events compared with Modbus and MMS traffic. This

66 CRITICAL INFRASTRUCTURE PROTECTION IX

is mainly due to long delays for several messages. Furthermore, the standard
deviation of the related transitions is higher. This result can be explained by
the IEC104 pushing pattern of communications, which reduces the number of
messages in the network and makes the transition timings less precise. This
behavior can complicate sequence analysis for the two types of misuse discussed
in Section 3.

6.4 Discussion

Despite the stability of industrial control system communications (e.g., long-
running TCP sessions and constant patterns) [6], this research highlights some
challenges to sequence analysis. In most of the cases, the generated mod-
els do not present definite paths (only the IEC104 results show some precise
sequences). Moreover, the MMS server to programmable logic controller com-
munications demonstrate the effect that a larger set of different messages has
on the numbers of states and transitions. Nevertheless, certain properties that
should be considered when developing sequence-aware intrusion detection sys-
tems were identified.

All the models produce numbers of edges that are much lower than the max-
imum permitted by the graphs. This result suggests that messages cannot be
combined to create every possible sequence, but that only specific sequences are
permitted. This is a necessary condition for sequence-aware intrusion detection.
Furthermore, the analysis shows that only a small fraction of the transitions are
used most frequently. This information emerges from the models by filtering
out transitions with few jumps. The remaining transitions often form precise
paths through the states and, thus, strengthen the hypothesis of substantial
sequentiality in the communications. The sequentiality can be weakened by
random delays, but this does not compromise the operations of a sequence-
aware intrusion detection system.

From this analysis, it is possible to envision two different, yet interoperable,
sequence detection mechanisms. The first mechanism enforces sequentiality
constraints defined by the referenced models (e.g., by observing the univocal
relationships defined for MMS). The second focuses on the probability dis-
tributions of the constraints (e.g., requiring the relative probabilities of the
transitions between a state and its neighbors to remain the same).

The first mechanism could be used to detect the “order-based” attacks de-
scribed in Section 3, because these attacks involve observing a sequence that
should not be found (i.e., a sequence that is not present in the model con-
structed using normal (attack-free) traffic). The second mechanism could be
used to detect “timing-based” attacks. Indeed, these attacks involve sequences
allowed by the model that occur much more frequently compared with the nor-
mal. In this case, the DTMC would allow the transitions until the probability
of choosing a path exceeds the one computed based on normal traffic.

Finally, some observations must be made regarding the relationships between
transitions that involve low numbers of jumps and human operations. MMS
traffic samples together with the process log file permit the extraction of tem-

Caselli, Zambon, Petit & Kargl 67

poral matches. Certain correlations were observed and the analysis supports
the assumption that links human interactions to such transitions and, specifi-
cally, to some of the clusters shown in Figure 6. This supports the profiling of
operator actions and differentiating them from malicious activities. Additional
experimentation and analysis would be valuable for sequence-aware intrusion
detection because they would decrease the number of false positives by helping
filter out sequences that are known to be operator actions.

7. Related Work

Protocol sequence analysis and modeling are activities that are usually re-
lated to communications-model-based verification and validation. Aarts et
al. [1] have presented an example of this approach. They implemented a reg-
ular inference technique based on Mealy machines and tested it on the SIP
and TCP protocols. Then, a predicate abstraction framework was used to in-
fer finite state models of network components from observations of external
behavior.

Chandola et al. [2] have presented three formulations of the sequence anomaly
detection problem: (i) identifying anomalous sequences with respect to a set of
known normal sequences; (ii) identifying anomalous subsequences within long
sequences; and (iii) identifying subsequences whose frequencies of occurrence
are anomalous. They identified suitable approaches for each formulation and
detailed their advantages and disadvantages.

A search of the literature reveals that few examples of sequence-aware net-
work intrusion detection systems exist. Sekar et al. [22] have proposed a
specification-based modeling approach based on extended finite state automata.
They demonstrated the feasibility of analysis based on well-defined network
protocols such as UDP and TCP. However, they did not test their approach
on application layer protocols and did not investigate the possibility of au-
tomatically learning communications patterns in cases where comprehensive
specifications are not available.

Krueger et al. [14] went beyond the approach of Sekar et al., using n-grams
and Markov chains to model protocols such as SIP, DNS and FTP. They demon-
strated the effectiveness of the detection mechanisms on text protocols, but they
did not test them against binary protocols. Industrial control systems mainly
use binary protocols and studies such as [7] highlight the problems of using
n-gram analysis in industrial control environments.

Some researchers have attempted to address this issue [5, 26]. Goldenberg
and Wool [5] used a deterministic finite state automaton to create a model from
real Modbus traffic. Their system identifies communications channels for each
pair of devices that communicate with each other (e.g., human-machine inter-
face and programmable logic controller, and programmable logic controller and
programmable logic controller). After the channel is set, the system records the
permitted transitions of the deterministic finite state automaton by examining
the sequence of Modbus messages within the channel. During the detection
phase, every unexpected transition is flagged as an anomaly. Anomalies are

68 CRITICAL INFRASTRUCTURE PROTECTION IX

of three types: retransmission (occurrence of a deterministic finite state au-
tomaton symbol that is the same as the previous symbol), miss (occurrence of
a known symbol in an unexpected position) and unknown (appearance of an
unknown symbol). Goldenberg and Wool rely on the assumption that Mod-
bus traffic is highly periodic. However, the tests conducted in this research
have demonstrated that Modbus traffic is periodic only if random delays are
filtered from the model. The approach of Goldenberg and Wool, if applied to
the Modbus traffic samples used in this work, would have been inadequate to
model communications and would have created an unmanageable number of
automaton states and a large number of false positives.

Yoon et al. [26] have also focused on Modbus, but they modeled communi-
cations using dynamic Bayesian networks and probabilistic suffix trees. Each
communications channel is reduced to a sequence of elements by parsing Mod-
bus messages and pairing requests and responses. The given sequence is fed to
the probabilistic suffix tree model and becomes the dataset that is used to de-
tect anomalous communications. In the detection phase, the system evaluates
every new sequence of messages by considering the likelihood of generating the
sequence using the probabilistic suffix tree model. The system triggers an alert
if the result is below a threshold. Yoon et al. tested their intrusion detection
system on traffic generated by a testbed as well as on a synthetic data trace.
However, they relied on the predictability of industrial control system traffic.
Yoon et al. also implemented a mechanism to deal with false positives caused
by single missing messages. This mechanism evaluates the probability that an
anomalous sequence is missing a message (e.g., due to network delays). The
mechanism considers a sequence to be normal traffic if the action of restor-
ing the message allows the sequence to be accepted by the probabilistic suffix
tree model, and the detection process proceeds to the next sequence. How-
ever, although the mechanism handles most of the false positives, Yoon et al.
did not consider the impact on false negatives (e.g., caused by attacks that
opportunistically filter specific network messages).

Finally, it is worth mentioning that there are several examples of sequence-
aware, host-based intrusion detection systems. Most of these systems profile
program activities and system calls (see, e.g., [8, 17, 25]) while other systems
focus on user activities (see, e.g., [15]).

8. Conclusions

This chapter has presented a methodology for modeling and analyzing in-
dustrial control system communications. The methodology models sequences
of messages as discrete time Markov chains (DTMCs). This is accomplished
by extracting information from network frames. An algorithm is then used
to model specific features of the communications. Finally, DTMCs are used
to understand the communications patterns and the consequentiality among
messages. Two sequence detection mechanisms have been proposed based on
the information provided by the DTMCs. The first is a deterministic approach

Caselli, Zambon, Petit & Kargl 69

that enforces specific sequentiality constraints. The second is a probabilistic
approach that exploits transition probability distributions.

Future research will focus on developing a sequence-aware intrusion detection
system. Research will also analyze other industrial control system protocols
such as DNP3 and Profinet to expand the variety of communications patterns
that can be handled, with the ultimate goal of developing high-performance
intrusion detection systems for industrial control environments.

Acknowledgements

This research was partially supported by the European Commission via
Project FP7-SEC-285477-CRISALIS of the 7th Framework Programme [3].
This research was also supported by a CTVR Grant (SFI 10/CE/I 1853) from
Science Foundation Ireland.

References

[1] F. Aarts, B. Jonsson and J. Uijen, Generating models of infinite-state
communications protocols using regular inference with abstraction, Pro-
ceedings of the Twenty-Second IFIP WG 6.1 International Conference on
Testing Software and Systems, pp. 188–204, 2010.

[2] V. Chandola, A. Banerjee and V. Kumar, Anomaly detection for discrete
sequences: A survey, IEEE Transactions on Knowledge and Data Engi-
neering, vol. 24(5), pp. 823–839, 2012.

[3] CRISALIS Project, CRISALIS – Securing Critical Infrastructures, Sie-
mens, Munich, Germany (www.crisalis-project.eu), 2012.

[4] N. Falliere, L. O’Murchu and E. Chien, W32.Stuxnet Dossier, version 1.4,
Symantec, Mountain View, California, 2011.

[5] N. Goldenberg and A. Wool, Accurate modeling of Modbus/TCP for in-
trusion detection in SCADA systems, International Journal of Critical
Infrastructure Protection, vol. 6(2), pp. 63–75, 2013.

[6] D. Hadziosmanovic, D. Bolzoni, S. Etalle and P. Hartel, Challenges and
opportunities in securing industrial control systems, Proceedings of the
Workshop on Complexity in Engineering, 2012.

[7] D. Hadziosmanovic, L. Simionato, D. Bolzoni, E. Zambon and S. Etalle,
N-gram against the machine: On the feasibility of n-gram network analysis
for binary protocols, Proceedings of the Fifteenth International Symposium
on Research in Attacks, Intrusions and Defenses, pp. 354–373, 2012.

[8] S. Hofmeyr, S. Forrest and A. Somayaji, Intrusion detection using se-
quences of system calls, Journal of Computer Security, vol. 6(3), pp. 151–
180, 1998.

[9] Industrial Control Systems Cyber Emergency Response Team, Advisory
(ICSA-14-073-01), Siemens SIMATIC S7-1500 CPU Firmware Vulnera-
bilities, Department of Homeland Security, Washington, DC (ics-cert.
us-cert.gov/advisories/ICSA-14-073-01), March 17, 2014.

70 CRITICAL INFRASTRUCTURE PROTECTION IX

[10] International Electrotechnical Commission, IEC 60870-5-101, Telecontrol
Equipment and Systems – Part 5-101: Transmission Protocols – Compan-
ion Standard for Basic Telecontrol Tasks, Geneva, Switzerland, 2003.

[11] International Electrotechnical Commission, IEC 60870-5-104, Transmis-
sion Protocols, Network Access for IEC 60870-5-101Using Standard Trans-
port Profiles, Geneva, Switzerland, 2006.

[12] International Organization for Standardization, ISO 9506-1: Industrial Au-
tomation Systems – Manufacturing Message Specification, Part 1: Service
Definition, Geneva, Switzerland, 2003.

[13] International Organization for Standardization, ISO 9506-2: Industrial Au-
tomation Systems – Manufacturing Message Specification, Part 2: Protocol
Specification, Geneva, Switzerland, 2003.

[14] T. Krueger, H. Gascon, N. Kramer and K. Rieck, Learning stateful mod-
els for network honeypots, Proceedings of the Fifth ACM Workshop on
Security and Artificial Intelligence, pp. 37–48, 2012.

[15] T. Lane and C. Brodley, Sequence matching and learning in anomaly de-
tection for computer security, Proceedings of the AAAI-97 Workshop on
AI Approaches to Fraud Detection and Risk Management, pp. 43–49, 1997.

[16] R. Langner, To Kill a Centrifuge: A Technical Analysis of What Stuxnet’s
Creators Tried to Achieve, The Langner Group, Arlington, Virginia, 2013.

[17] G. Mao, J. Zhang and X. Wu, Intrusion detection based on the short
sequence model, Proceedings of the Seventh World Congress on Intelligent
Control and Automation, pp. 1449–1454, 2008.

[18] S. McLaughlin and P. McDaniel, SABOT: Specification-based payload gen-
eration for programmable logic controllers, Proceedings of the ACM Con-
ference on Computer and Communications Security, pp. 439–449, 2012.

[19] Modbus Organization, Modbus Application Protocol Specification (v1.1a),
Hopkinton, Massachusetts (www.modbus.org/specs.php), 2004.

[20] I. Nai Fovino, A. Carcano, T. De Lacheze Murel, A. Trombetta and M.
Masera, Modbus/DNP3 state-based intrusion detection system, Proceed-
ings of the Twenty-Fourth IEEE International Conference on Advanced
Information Networking and Applications, pp. 729–736, 2010.

[21] President’s Commission on Critical Infrastructure Protection, Critical
Foundations: Protecting America’s Infrastructures, The Report of the
President’s Commission on Critical Infrastructure Protection, The White
House, Washington, DC, 1997.

[22] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang and S.
Zhou, Specification-based anomaly detection: A new approach for detect-
ing network intrusions, Proceedings of the Ninth ACM Conference on Com-
puter and Communications Security, pp. 265–274, 2002.

[23] K. Stouffer, J. Falco and K. Scarfone, Guide to Industrial Control Sys-
tems (ICS) Security, NIST Special Publication 800-82, National Institute
of Standards and Technology, Gaithersburg, Maryland, 2011.

Caselli, Zambon, Petit & Kargl 71

[24] A. Swales, Open Modbus/TCP Specification, Release 1.0, Schneider Elec-
tric, Rueil-Malmaison, France, 1999.

[25] C. Warrender, S. Forrest and B. Pearlmutter, Detecting intrusions using
system calls: Alternative data models, Proceedings of the IEEE Symposium
on Security and Privacy, pp. 133–145, 1999.

[26] M. Yoon and G. Ciocarlie, Communication pattern monitoring: Improving
the utility of anomaly detection for industrial control systems, presented
at the NDSS Workshop on Security of Emerging Networking Technologies,
2014.

	MODELING MESSAGE SEQUENCES FOR INTRUSION DETECTIONIN INDUSTRIAL CONTROL SYSTEMS
	1. Introduction
	2. Background
	3. Sequence Attacks
	4. Sequences and Sequence Events
	5. Modeling Message Sequences
	6. Experiments and Analysis
	6.1 Modbus
	6.2 MMS
	6.3 IEC104
	6.4 Discussion

	7. Related Work
	8. Conclusions
	References

