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SUMMARY

Information technology (IT) service availability is at the core of customer satisfaction and business success
for today’s organisations. Many medium‐ to large‐size organisations outsource part of their IT services to
external providers, with service‐level agreements describing the agreed availability of outsourced service
components. Availability management of partially outsourced IT services is a non‐trivial task since classic
approaches for calculating availability are not applicable, and IT managers can only rely on their expertise
to fulfil it. This often leads to the adoption of non‐optimal solutions. In this paper we present A2

THOS, a
framework to calculate the availability of partially outsourced IT services in the presence of SLAs and to
achieve a cost‐optimal choice of availability levels for outsourced IT components while guaranteeing a
target availability level for the service. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nowadays, the information technology (IT) infrastructure of most large organisations is so complex
that it is often organised in terms of services that are offered as part of an internal market in which
different business units offer and buy IT services to and from each other. In some cases, services are
acquired from an external organisation rather than from an internal business unit (outsourcing).
Typically, services offered by an internal provider are customised and tailored to support the business
goals of the organisation, while those offered by external providers are standardised and large scale,
and therefore are less specific but potentially cheaper than those implemented internally. In some
cases, internal providers outsource some sub‐services to external ones, for instance when it lacks
specific competencies (e.g. SAP configuration). This is a so‐called mixed sourcing strategy.
Regardless of whether the service is bought internally or externally, the terms and conditions of the

contract are determined in a service‐level agreement (SLA). Figure 1 summarises the concept of
mixed‐sourced IT services regulated by SLAs.
In this paper we focus on IT service availability, which is at the core of customer satisfaction and

business success for organisations [1], and indeed it is a major element in any internal or external IT
SLA. In fact, a typical IT SLA includes hard clauses on the minimal availability of the service offered
(for example, it may include that the service should not be ‘down’ for more than 2 hours per week,
and a penalty fee for each week in which this is not satisfied).
Now, the two concerns we focus on (and at the same time the two questions to which we provide an

answer within the limits of the settings of this paper) are:

1. How can a business unit check and/or guarantee that a given (offered) service will respect some
given minimal availability levels?

2. As 1, while minimising costs.
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Figure 1. Mixed‐sourced IT service provision regulated by SLAs. The organisation’s business units (1)
use IT services (2) provided by the internal IT department (3). These services are regulated by means of
SLAs (4). In turn, the IT department is using supporting services (5) offered by an external provider
(6) to run (part of) the IT infrastructure. Also these services are regulated by means of SLAs (7)
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Let us elaborate on these two points and explain why they are not only relevant but also non‐
trivial problems.
An IT service is usually offered by a system consisting of several components. These components

can interact in non‐trivial ways: for instance, a component could be crucial to the service in a way that
if the component is unavailable then theservice becomes unavailable as well; other components may
be organised in such a way (e.g. exploiting redundancy) that only if a number of them fails will the
service be affected. In addition, a component may depend in a non‐trivial way on sub‐services which
are in turn regulated by other SLAs.
To ensure that the minimal service availability remains within the agreed margins, IT managers can

take reactive (e.g. monitoring, measuring) and/or proactive measures. A key proactive measure is
planning and designing service availability when services are created or changed. At the business
level, planning service availability allows the service provider to set availability figures on the SLAs
that both satisfy customer needs and can be guaranteed by the technical infrastructure providing the
service. To achieve this at thetechnical level the service provider needs to (a) calculate the availability
of the IT system providing the service(s) based on the information available on system components,
and (b) make appropriate system design choices to support a specific availability level by selecting the
system components based on their contribution to the availability of the system.
Reliability studies have introduced a number of (by now) standard techniques (e.g. continuous‐time

Markov chains (CTMC) [2] and Petri nets [3]) which allow one to compute system availability when
the mean time between component failures and the mean time to repair a component is known.
However, in the context of mixed‐sourced IT services, this information is usually not available.
Instead, SLAs between the external and the internal provider typically only include the extitminimal
guaranteed availability of the component. Therefore, it is not possible to apply these standard
techniques to calculate the system availability (see Section 2 for details).
Regarding the second point, the selection and negotiation of sourcing contracts is a complex

problem which involves the establishment of business relations between different organisations. To
select sourcing contracts in an optimal way is the subject of scientific studies in the field of economic
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2012; 22: 104–130
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game theory, such as the principal agent model (see Section 2 for further details). In this paper we
focus on one contractual scenario, in which the contract between the organisation and the service
provider is composed from a number of ‘standard’ building blocks arranged in a service catalogue.
Each building block describes one single service (e.g. the management of a UNIX server) and allows
the customer to choose the level of a number of quality attributes among a standardised set, with
associated prices. One of these quality attributes is availability. Different availability levels (e.g. gold,
silver and bronze) have different associated prices, and the customer can choose a level according to
its needs. Due to economies of scale, the cost of a certain service (with a fixed configuration)
decreases for the outsourcer as the purchased volume increase. Therefore, graduated prices are usually
agreed so that also the price for the customer decreases when volumes increase. In order to fully
benefit from this kind of sourcing contract, the customer needs to select the quality level of the
different available attributes for the different building blocks in such a way that the delivered
composite service, which relies on these building blocks, has the expected quality and that the cost is
minimal. Considering availability, this is a non‐trivial optimisation problem: one needs to determine
the combination of minimal availability levels for the sub‐services in such a way that the total cost is
minimal, while ensuring that the resulting service achieves the availability specified in the SLA of the
composite service. This cannot be solved without the use of specific optimisation algorithms and
typically IT managers choose non‐optimal, conservative solutions.
1.1. Contribution

We present A2
THOS, a framework for the analysis and optimisation of the availability of mixed‐

sourced IT services. The framework consists of (1) a modelling technique to represent partially
outsourced IT systems, their components and the services they provide, based on AND/OR de-
pendency graphs, (2) a procedure to calculate (a lower bound of) the system availability given the
(lower bounds of) components availability, and (3) a procedure to select the optimum availability level
for outsourced components in order to guarantee a desired target availability level for the service(s) and
to minimise cost.
An AND/OR dependency graph is an AND/OR directed acyclic graph in which nodes represent

system components and services, and edges between nodes represent the functional dependency of
one node with the other. We use the graph in order to calculate a state function describing the
availability of each service based on the state of the components (operational or not operational). We
then use the state function and information about component availability to determine a lower bound
for the availability of the service, by setting up a linear programming problem. Based on this
procedure, we finally present the procedure to set up an integer programming problem which allows
one to determine a cost‐optimal combination of availability levels for outsourced components in order
to guarantee a target service availability. We show the practical use of A2

THOS by implementing it in
a tool which we apply to the service availability planning of an industrial case.
1.2. Limitation of the approach

A2
THOS uses an AND/OR dependency graph to represent IT systems; thus it is unable to explicitly

represent failure recovery mechanisms such as availability of spare parts. Spare parts are used to
implement warm and cold standby mechanisms. For example, to shorten the downtime caused by a
server breakdown, the system administrators can keep another server ready to replace the broken one.
This second server is the spare part. When it is always running (but not operating) and the workload of
the broken server is automatically routed to the spare server, this mechanism is called hot standby.
When the workload of the broken server needs to be manually routed to the spare server, this
mechanism is called warm standby. When the spare server is not readily available, but it needs a setup
phase before the workload of the broken server can be redirected to it, the mechanism is called cold
standby. Our representation allows us to explicitly model hot standby mechanisms by using OR
nodes, but it is not applicable in case of warm and cold standby mechanisms. We share this
limitation with other well‐known modelling techniques, such as traditional fault trees (FTs) and
reliability block diagrams (RBDs).
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2012; 22: 104–130
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1.3. Organisation

The rest of the paper is organised as follows. In Section 2 we present related work in the fields of
economic game theory and reliability. In Section 3 we provide the mathematical foundation for
calculating the minimal guaranteed serviceavailability. In Section 4 we present a procedure to find the
optimal choice of availability level for outsourced components. In Section 5 we describe the tool we
created to implement the A2

THOS framework and the benchmarks we conducted to test its scalability
performance. Finally, in Section 6 we show how we applied A2

THOS to a practical case of service
availability planning in an industrial context. Appendices A and B present the proof of one of the
theorems we introduce and the representation capabilities of our model with respect to RBDs,
respectively.
2. RELATED WORK

The problem we address in this paper pertains to two main research areas: economic game theory and
reliability theory.
2.1. Economic game theory

Simplifying a bit from the complex reality of IT management, the general goal of IT managers within
an organisation is to provide the IT services required by the organisation business units while
remaining within their (limited) budget. The provided IT services need to comply with the functional
and non‐functional requirements of business units. On the other hand, and applying the same
simplifications, the goal of business unit managers with regard to IT services is to obtain the IT
services needed to run (or improve) business operations at the lowest possible price, in order to
maximise profits. It is easy to see that there is a conflict on the economic aspect of these two goals. In
the same way, the goal of IT managers conflicts similarly with the goals of external IT service
providers. This kind of conflict can be modelled using game theory [4].
Burgess [5] proposes to use promise theory [6] as a framework for describing the inter‐company

dependency (outsourcing) and the free corporate collaboration in a market economy that occurs in the
context of a service‐oriented architecture. In promise theory, the actors of the service‐oriented
architecture are called agents and represented as graph nodes. An agent can be a person (e.g. a
manager), a company or business unit (e.g. an outsourcer), a physical entity (e.g. documentation) or
even a logical process. The cooperation between agents is modelled as a directed edge in the graph,
labelled with a promise. A service from one node to another is therefore modelled as a kind of promise
that can be made. In this view, SLAs can be modelled in the body of the promise as constraints, which
indicate exactly what is being promised. Using agents and promises, one can model the different
services provided between different entities and can identify agent properties such as functional roles
(e.g. when different agents all make the same kind of promise).
If promise theory can be used to model existing SLAs, the problem of contract selection can be

addressed by means of the principal–agent model [7,8]. In this model, a principal wants to outsource
one or more tasks to a set of agents. The principal–agent model is based on the following assumptions
[9]: (1) both parties have rational behaviour and rational expectations and interact on the basis of
institutions, like freedom of contract and private property; (2) the actions undertaken by the agents
have external effects on the principal’s profit and success; (3) the agent has discretionary freedom due
to asymmetric and incomplete information with regard to the principal’s activities; and (4) the agent
shows opportunistic behaviour to maximise its own expected profit, instead of acting in line with the
goals of the principal. Agents can fall into a variety of different types that indicate their relative costs
and abilities. In the case we are considering in this paper, the principal would be the organisation (or
its IT manager) and the agents would be the different IT service providers. The principal will make
promises about the wages to offer to the different agents, while the agents will make promises about
the ‘effort’, or services, they will commit on. Various mechanisms (incentives) may then be used to
try to align the interests of the agent in solidarity with those of the principal, (e.g. piece rates/
commissions, profit sharing, efficiency wages, performance measurement).
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2012; 22: 104–130
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Gellings [10] analyses outsourcing relationships by applying the principal–agent model. The
theoretical findings stress that within an optimal contract the marginal utilities of both parties involved
have to be proportional. In practice this can be achieved by two possibilities. First, during contract
negotiation, the two parties have to disclose their cost calculations. Based on this information the two
parties can agree on a pricing scheme that is advantageous for both and set a price cap combined with
a renegotiation option to ensure proportionality of the respective cost functions. In the second
possibility, both parties can agree upon a pricing scheme that reflects proportionality of cost functions
without exactly disclosing them (e.g. by means of graduated prices that reflect the realisation of
economies of scale on the side of the service provider). This second possibility reflects the scenario we
analyse in this paper, in which standard options are defined for outsourced services in which prices
depend both on the effort (i.e. the quality level of the service) and on the margins that the outsourcer
can gain because of economies of scale. In fact, the analysis presented in this paper and focused on the
optimisation of IT availability costs is based on the same basic assumptions of the principal–agent
model, and on one of the scenarios identified by means of the application of the principal–agent model
to the context of IT outsourcing.
2.2. Reliability theory

Our work relates to four main topics discussed in reliability studies: (1) the general approach
to calculate system availability; (2) modelling techniques to represent the system under analysis;
(3) existing tools; and (4) other approaches taking into account availability to optimise IT service
composition.

2.2.1. The general approach
Referring to a classic formulation [11] taken from reliability theory, a repairable system is a system
which can be repaired after a failure.
In the simplest case, the system m for which availability must be determined is represented by the state

function χ(m, t), which assumes value 1 if m is operating within tolerances at time t, 0 otherwise. The
general way of calculating the availability of a repairable system is to assume it has an independent,
exponential distribution of failure and repair time (a so‐called stationary alternating renewal process [12]).
However, to do so one must know at least two properties of the system: its failure rate λ; and its repair
rate μ. The first property specifies how often the system will fail on average, i.e. its mean time between
failure (MTBF): λ═ 1

MTBF . The second one specifies its mean time to repair (MTTR): μ═ 1
MTTR .

Under this assumption the limiting availability is then obtained using the formula Ā═ μ
μþλ.

In the general case, the system can assume more than two states. Such a system is called complex. A
complex system is a system which is made of interconnected components that as a whole exhibit one
or more properties depending on the properties of the individual components. For example, a complex
system can be made of two ‘simple’ components (i.e. two components that can independently be
either in operative or in repairing state). The state of the system depends on the state of the two
components: the system may work properly even if one component only is operative, or it may need
both components to be operative. To model the state of the system, a state formula is used.
Components can have more than two states (e.g. operative, planned maintenance, emergency repair).
To compute the availability of complex systems, CTMC [2] or Petri nets [3] are used. To employ such
techniques, one has to (1) define a state formula of the system based on the component’s state, and (2)
know the transaction probability of each component from one state to the other.
In our case, the information available in the SLAs for outsourced components concerns only

minimal availability in a given time frame (e.g. 1month). Therefore, classic techniques are not
applicable to this problem, as the internal states of each component and the probability of state
transition (i.e. failure and repair rate) are only known by the outsourcing company.

2.2.2. System modelling
Several approaches have been proposed in the literature for system reliability modelling. FTs and
RBDs are the most used ones. However, we should mention that other approaches have also been
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2012; 22: 104–130
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proposed; e.g. Torres‐Toledano and Sucar [13] use Bayesian networks, and Leangsuksun et al. [14]
use a UML representation (although in this second case the authors do not provide the mathematical
support for reliability analysis). In FTs, a number of components (called basic events) are linked
together to make up a system according to AND/OR relationships. The same behaviour is achieved in
RBDs through SERIES/PARALLEL compositions. According to Flammini et al. [3], FTs are easy to
use, as they do not require very skilled modellers, and are relatively fast to evaluate, as it is possible to
use very efficient combinatorial solving techniques to obtain most of the reliability indexes.
In FTs, the system state is represented by the top event, i.e. the root of the tree. It is possible to build

a Boolean equation from the FT, and to reduce it to the minimal cut set, i.e. the smallest set of
combinations of basic events (component failures) which all need to occur for the top event to take
place (system failure) [15]. Based on the minimal cut set, a combination of combinatorial techniques
and CTMC or Petri nets is then used to calculate the system (limiting) availability.
According to Flamini et al. [3], the main limitation of FTs and RBDs consists in the lack of

modelling power, as they do not allow modelling maintenance‐related issues explicitly. To solve this
problem, FTs and RBDs have been extended into dynamic FTs [16] and dynamic RBDs [17],
allowing one to model maintenance‐related issues.
The modelling notation we use in this paper (AND/OR dependency graphs) can be seen as a

condensed form of FTs. With a single AND/OR dependency graph we are able to model a forest of
FTs sharing (some of) the basic events (i.e. the failure of a component), but with different top events.
A single AND/OR dependency graph can thus model separately the failure of all the business services
which the IT system provides, and for which a specific availability level must be calculated. In fact, it
is possible to (automatically) transform any AND/OR dependency graph into a forest of FTs, as well
as in a set of RBD, as we show in Appendix B. We share with FTs the use of minimal cut sets, which
in our notation are called dependency sets (see Section 3), but the availability calculation we apply to
AND/OR dependency graphs is different from the one used in FTs (for the reason mentioned above).
In Appendix B we will give a more detailed explanation of the differences between FTs and the AND/
OR dependency graphs we use in A2

THOS.

2.2.3. Tools
IBM Tivoli [18] and HP Business Availability Center [19] are two of the most popular configuration
management tools. These tools are meant to support IT managers in the configuration and maintenance
of complex IT systems. Among the many features they possess, they can be used to manage SLAs,
including availability levels. One can assign to each IT component the availability level imposed by
SLAs, and keep track of the actual availability levels to check for SLA compliancy. However, to the best
of our knowledge there is no support for the analytical calculation of the service availability.
Galileo [20], Coral [21], Relex [22] and BlockSim [23] are tools operating with dynamic FTs.

Although integrating the A2
THOS engines in one of these tools would be useful, this was not possible:

Relex and BlockSim are commercial tools, Coral is mostly a MatLab library without a GUI, and
Galileo is free software, but not open source. For these reasons we developed our prototype as an
independent Java/Prolog tool.

2.2.4. Availability in service composition
In the field of IT service composition, several approaches have been proposed that consider
availability as one of the quality of service (QoS) parameters to optimise the performance of the
resulting composite IT service. Gu et al. [24] propose QUEST, a framework to schedule dynamically
a composite IT service while satisfying QoS requirements (e.g. response time and availability)
imposed by SLAs. Zeng et al. [25], Yu and Lin [26] and Ardagna and Pernici [27] propose scheduling
techniques to create a cost‐optimal execution plan for composite web services which respect QoS
parameters (including availability) defined in SLA contracts.
In all these studies, an estimation of the availability of the composite service is made by multiplying

the availability level of the components (expressed as a real number in the interval [0,1]). This is
possible thanks to two simplifying assumptions. First, all the components must be available at the
same time for the system to operate (i.e. the system is an AND combination of its components and it
becomes unavailable at the moment any of its components is unavailable). Secondly, the resulting
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2012; 22: 104–130
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availability is not a lower bound, i.e. there can be a run of the composite service in which the resulting
availability is lower than the calculated one. Different from these approaches, A2

THOS is able to deal
with a wider range of dependencies, namely combinations of AND and OR dependencies. In the
sequel we also argue in more detail why OR dependencies are necessary to model complex IT services
correctly. A2

THOS also allows one to calculate an absolute lower bound for the availability, which can
be safely included in an SLA contract.
3. ANALYSIS OF THE MINIMAL SERVICE AVAILABILITY

We now present the theoretical foundations of A2
THOS. Let us first start with an intuitive explanation.

We model the system using an AND/OR dependency graph, in which a node represents a component
of the system that at any given time may (or may not) be available. A directed edge from node m to
node n indicates that m depends on n, i.e. that the availability of m depends also on the availability of
n in a way that we are about to explain.
In an AND/OR dependency graph, a node m can be unavailable because of an internal failure, or

because (some) nodes it depends on are unavailable. To model internal failure, to each node m we
associate a (virtual) internal node m′. We say that the internal node m′ is unavailable if the node is
unavailable because of an internal failure. Therefore, internal nodes are just a notation artefact with no
other fundamental purpose than indicating the internal failure of a node. An availability level set to an
outsourced component is associated to the internal node representing the component, while the
availability level of a node (also with regard to nodes it depends on) is associated to the node itself.
To model the fact that m becomes unavailable because one or more nodes it depends on are

unavailable, we then consider nodes of two types: AND and OR (see Figure 2).
Ifm is a node in an AND/OR dependency graph and n1,…, nk are the nodesm depends on, we say that

• m is unavailable at time t iff its internal node m′ is unavailable at time t or
– at least one node in n1,…, nk is unavailable at time t, in case m is an AND node;
– n1,…, nk are all unavailable at time t, in case m is an OR node.

Formally:

Definition 1 (AND/OR dependency graph). An AND/OR dependency graph 〈N,E〉 is a directed and
acyclic graph (DAG) where N is the set of nodes, and is partitioned in AND −N and OR −N, and E is
the set of edges E⊆ {〈u, v〉 |u, v ∈N}.
Each node n ∈N thus has a virtual internal node n′ and, given a graph 〈N,E〉, we call N′ the set of

internal nodes of g; N′═ {n′ internal of n |n ∈N}.

Running example: Part 1. In this example we analyse the availability of an IT system providing two
IT services (Service1 and Service2), and implemented by means of three applications (App1,
App2 and App3) running on fivedifferent servers (Srv1, Srv2, Srv3, Srv4, Srv5). Service1
is implemented by App1 and App2 in such a way that the service goes offline only when both
applications are offline (OR dependency). Service2 is implemented by App3, and App3 depends
a b

Figure 2. Two simple AND/OR dependency graphs, respectively with (a) AND and (b) OR nodes.
Each of these nodes can also be indicated as internal nodes (i.e. m′ is the internal node of m)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2012; 22: 104–130
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on App2 to work properly. App1 is a distributed application running on Srv1, Srv2 and Srv3 in
such a way that it can operate only if both Srv1 and either Srv2 or Srv3 are online. App2 runs on
Srv3, and App3 runs in both Srv4 and Srv5 with a load‐balancing mechanism, such that it can
continue to operate even if one of them is offline. Finally, the system is protected by the firewall FW1.
According to this description, we build the AND/OR dependency graph g═ 〈N,E〉 as follows:
AND‐N═ {Service1, Service2, FW1 App1, App2, App3, Srv1, Srv2, Srv3, Srv4, Srv5},
OR‐N═ { OR1, OR2, OR3 }, and E═ { <Srv1, App1>, <Srv2, OR2>, <Srv3, OR2>, <Srv3,
App2>, <Srv4, OR3>, <Srv5, OR3>, <OR2, App1>, <OR3, App3>, <App1, OR1>, <App2, OR1>,
<App2, App3>, <App3, Service2>, <FW1, Service1>, <FW1, Service2>, <OR1, Ser-
vice1> }.
To model the OR dependencies correctly we added three virtual nodes to act as logical gates: OR1,

OR2 and OR3. These nodes do not correspond to any existing component of the system, and therefore
they cannot fail by themselves. Similarly, also the two nodes representing services (Service1 and
Service2) correspond to system functionalities which cannot fail by themselves. Figure 3 shows the
AND/OR dependency graph of our running example.
In classic reliability theory, the internal state of a node is described by a random variable which
assumes value 1, corresponding to the functioning state, and 0, corresponding to the failed state.
Accordingly, the state of a system made of multiple components is described by a vector of random
variables, each describing the state of one component. It is also possible to describe the state of a (sub)
system with values 0 or 1 as a function of the states of the (sub)system components.
We represent these concepts by means of the state function χ. Given a node m, χ(m′, t) is 0 iff m at

time t suffers an internal failure (represented by the virtual internal node m′), and 1 otherwise.
Similarly, χ(m, t)═ 0 indicates that node m is unavailable at time t (either because of an internal
failure or because a node m depends on has failed). As explained above, the state function of a node m
is a function of the state of its internal node and the state functions of the nodes it depends on. This is
formalised in the next definition.

Definition 2 (State function). Let g═ 〈N,E〉 be an AND/OR dependency graph and N′ be the set of
(virtual) internal nodes corresponding to N. We say that χ is a state function for g iff χ :

N∪N ′
� �� Rþ→ 0; 1f g, and for each m ∈N and t ∈ Rþ the following holds: let n1,…, nk be the nodes
in N m depends on. Then
Figure 3. The AND/OR dependency graph representing the system we analyse in our running
example. AND nodes are represented by the ∧ symbol and OR nodes by the ∨ symbol
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χ m; tð Þ ═ χ m′; tð Þ⋅χ n1; tð Þ;…; χ nk; tð Þ; if m is an AND node
χ m′; tð Þ⋅max χ n1; tð Þ;…; χ nk; tð Þð Þ; if m is an OR node

�
(1)

Using this function, we can represent the part of a time interval [t0, t1] in which a given node is

available as the infinite set {t ∈ [t0, t1]|χ(m′, t)═ 1}.
Therefore, given the state function of all the internal nodes in an AND/OR dependency graph, one can

iteratively compute the state function of all the nodes in the graph (here the fact that the graph is acyclic
guarantees that the above function iswell defined). The only condition we pose on the χ function is that it
should be Lebesgue measurable, which guarantees that given two real numbers r and s we have that

∫
s
r χ m; tð Þdt exists. It should also be noted that χ(m, t) is a random variable, as a function of random
variables.
According to the dependability theory [11], the interval availability of a node m is the fraction of a

given interval of time that m operates within tolerances. Supposing the given interval of time is [t0, t1],
the formula of interval availability is given by

Ā m; t0; t1ð Þ ═ 1
t1− t0

Z t1

t0

χ m; tð Þdt (2)

The limiting interval availability, or steady‐state availability, is the expected fraction of time in the
long run that the system operates within tolerances (limt→∞ Ā(m, t0, t)).
The formulas for availability we just described, however, are too general to perform numerical

calculations. χ(m, t), being a random variable, will be governed by a distribution function. Therefore, in
reliability theory, it is common practice to assume a stationary alternating renewal process, i.e. a system
with independent, exponential distributions of failure and repair times. Under this assumption, the

formula for the limiting interval availability is given by
μ

λþ μ
, where λ is the failure rate and μ is the

repair rate. λ and μ can be estimated for a real system based on theMTBF andMTTR, and this allows one
to compute the limiting interval availability for a real system (under the given assumptions).
In SLAs, the agreed minimal availability is always indicated as fraction of uptime in a given time frame

(e.g. 0.98 uptime per month). Note that the presence of the time frame is crucial: for instance,
guaranteeing 0.99 uptime per month is more difficult than guaranteeing 0.99 uptime per year. In the first
case the system may not be offline for more than 7.2 hours in a row, while in the second case the system
may be offline for up to 87.6 hours in a row. Equation (2) can be seen as a formalisation of the availability
parameter used in SLAs. Therefore, to be able to calculate the system interval availability, the component
interval availability must have been expressed in the same time interval (e.g. 1month). Since the minimal
availability for outsourced components is given in SLAs, under the assumption of a state function as
defined in (1), we do not need to set any stochastic assumption of the form of χ, as the quantity:

Ā m′; t0; t1ð Þ═ 1
t1− t0

Z t1

t0

χ m′; tð Þdt

is a given input and never needs to be calculated.
The availability of a component is also given under the assumption that any other component it

depends on is always available. For example, for server management, the SLA ensures a given
availability level, provided that the data centre in which the server is deployed and the network to
which the server is connected are operating within tolerances.
Now, the technical question we are going to address in the rest of this section, the answer of which

will form the basis of our approach, is the following.
Let us fix a reference time interval [t0, t1] and suppose that we know a lower bound for the

availability of the internal nodes of the nodes in a graph, i.e. for each n′ ∈ N′, we know an αn′ such that
the state function χ satisfies the following equation:

av n′ð Þ ═ð Þ 1
t1− t0

Z t1

t0

χ n′; tð Þdt≥ αn′ (3)

where av(n′) is the fraction of the time interval [t0, t1] in which n′ was operating within tolerance.
Given an arbitrary node m ∈N, what can we say about av(m) in the same time period? In particular,
can we compute a lower bound for it?
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Note the importance for the IT manager of considering a lower bound of the availability of a node
(i.e. an IT service). The availability of the node depends on the availability of nodes it depends on, and
only a minimum guaranteed figure is given for them. Based on assumption (4) of the principal agent
model (see Section 2), the agent (i.e. the service provider) shows opportunistic behaviour to maximise
its own profit, regardless of the goals of the principal. Under this assumption, the principal (IT
manager) cannot expect that the unavailability of the outsourced nodes will be distributed in a way
that guarantees his availability‐related goals with respect to the business units of the organisation. For
example, if the service provider has an economic advantage in planning the maintenance of
outsourced components in such a way that the IT service of a customer will violate one of the
organisation (internal) SLAs it will do that, provided that it is not violating oneof the SLAs agreed
with the customer. Therefore, the IT manager will be interested in considering the ‘worst case’
scenario when planning the availability of outsourced components.
3.1. Dependency sets

To answer the question above, we have to introduce the concept of dependency set. The dependency
set of a node m is the set of the smallest sets of internal nodes in the AND/OR dependency graph
which, if all unavailable at the same time, will cause the failure of m. The elements of a dependency
set have the same property as the minimal cut sets of a FT, and can be obtained similarly by
representing the graph as a Boolean equation and using substitution methods to reduce the equation.
We will now present a more formal definition of dependency sets.

Definition 3. Consider an AND/OR dependency graph g═ 〈N,E〉 and a node m ∈N. The dependency
set of m, DEPSm ⊆} N ′

� �
, is defined inductively as follows:

• If m is a leaf node, then DEPSm═ {{m′}}.
• If m has children n1.. nk; let DEPSn1 ;…;DEPSnk be the dependency set of n1,…, nk and assume
(without losing generality) that for every i, DEPSni ═ Di;1;…;Di;li

� �
, then:

– if m ∈AND −N then

DEPSm ═ m′f gf g∪∪i∈ 1::k½ �DEPSni ;

– if m ∈OR −N then

DEPSm ═ m′f gf g∪ D1;j1∪…∪Dk; jk jDi;ji ∈DEPSni
� �

:

Running example: Part 2. By applying Definition 3 to our example AND/OR dependency graph, we
obtain the following dependency sets for Service1 and Service2: DEPSService1═ {{FW1′},
{App1′, App2′}, {App1, Srv3′}, {Srv1′, App2′}, {Srv1′, Srv3′}, {App2′, Srv2′, Srv3′}, {Srv2′, Srv3′}.
DEPSService2═ {{FW1′}, {App2′}, {App3′}, {Srv3′}, {Srv4′, Srv5′}}. For the sake of presentation we did
not include in the dependency sets the internal nodes that cannot fail by themselves (i.e. Service1′,
Service2′, OR1′, OR2′ and OR3′). It is easy to see that when the nodes of any of the elements of
DEPSService1 are unavailable at the same time, Service1 is unavailable, and the same forDEPSService2.

The dependency set of a node is always a set of sets of internal nodes, so without loss of generality
we can always write DEPSm═ {D1,…,Dk}.
As for minimal cut sets in FTs, a relevant property of DEPSm is that, if the internal m′ of m is

available at a given time t, then m is not available only if there exists DEPSm such that at least all the
internals of the nodes contained in one element D of DEPSm are all unavailable. More formally, if we
fix a time t0, then

χ m; t0ð Þ═ 0⇔ ∃D ∈ DEPSm; ∀d ∈ D; χ d; t0ð Þ═ 0 (4)

For the sake of presentation we skip the (straightforward) demonstration of this property.
As an example let us consider the two toy cases described in Figure 2. In case (a),

DEPSm ═ m′f g; n′1f g; n′2f gf g; so if χ(m, t)═0 and χ(m′, t)═1, then either χ n′1; tð Þ═ 0 or χ n′2; tð Þ═ 0.
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In case (b), DEPSm ═ m′f g; n′1; n′2f gf g ; so if χ(m, t)═0 and χ(m′, t)═1, then both χ n′1; tð Þ═ 0 and
χ n′2; tð Þ═ 0.
The following theorem states that if we know a lower bound for the availability of the internal

nodes of an AND/OR dependency graph then we can effectively compute an optimal lower bound of
the availability of each nodem ∈N in the graph. In the theorem we will also explain the meaning of an
optimal availability lower bound.
In relation to the concrete problem we are discussing in this paper, this theorem states that there is a

way for the manager to check that a partially outsourced IT service will comply with the internal
SLAs, even in the case that the outsourced components will be unavailable in the worst possible
combination (but still within their respective SLAs).
Theorem 1: Let g═ 〈N,E〉 be an AND/OR dependency graph, [t0, t1] be a time interval, and for
each n′ ∈N′ let αn′ be a real value αn′ ∈ 0; 1½ �. Then, for each m ∈N we can compute αm optimal,
such that for each state function χ for g the following holds:

if ∀n′∈ N′
1

t1− t0

Z t1

t0

χ n′; tð Þdt≥ αn′ (5)

then

1
t1− t0

Z t1

t0

x m; tð Þdt ≥ αm (6)

We say that αm is optimal if we can find a χ for g such that (5) holds and in (6) equality holds.
We provide the proof for this theorem in Appendix A. As a result of the proof, we obtain a method

to calculate the lower bound αm of the availability of any node m in the graph. The method consists in
solving the linear programming problem of (7).
Intuitively, the availability of m is minimal when m is sequentially disrupted by the simultaneous

failure of all the internal nodes of each element of DEPSm. Without loss in generality, we can write
DEPSm═ {D1,…,Dk}, and for each Di we can write Di ═ di;i;…; di;li

� �
and call ui the unavailability

caused to m by Di. According to this notation, the availability of m is given by 1 less the sum of the
unavailability caused by each Di (represented by ui). Therefore, to minimise the availability of m we
write the following optimisation problem:

αm ═

minimize 1− u1−⋯− uk
subject to
u1 ═ 1−a1;1

� �
═⋯═ 1− a1;l1

� �
⋮
uk ═ 1−ak;1

� �
═⋯═ 1− ak;lk

� �
∀n∈N;

P
di; j ∈Dn

1− ai; j ≥ 1−αn′
a1;1;…a1;l1 ;…; ak;1;…; ak;lk ≥ 0

8>>>>>>>><
>>>>>>>>:

(7)

The objective function of (7) represents the availability of node m, which needs to be minimised.
The first k conditions impose that the internal nodes of each element Di ∈DEPSn are unavailable at

the same time: this ensures m is disrupted because of the simultaneous failure of all the internal nodes
in Di. To this end, we call ai, j the availability of the element di, j ∈Di and we impose that, given a Di,
all ai, j are equal.
The subsequent condition imposes for each node n ∈N that the availability of its internal node n′ is

not less than αn′: in this way we ensure that, even if an internal node n′ is contained in more than one
element of DEPSn, the unavailability caused by its failure will not exceed its upper bound (1−αn′). In
fact, given two elements D1,D2 ∈DEPSm, these two elements might not be pairwise disjoint (i.e.
D1 ∩D2≠Ø) because some elements in D1 and D2 refer to the same node. In this condition, we call Dn

the set of elements di, j which all refer to the same node n.
The last condition ensures no negative value can be used to represent availability. A solution to (7)

can be found by using the simplex algorithm.
From now on, we call αm determined from (7) the minimal aggregated availably level of m.
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Running example: Part 3. According to the dependency sets we previously determined and to (7),
the linear programming problem which determines αService1 is

minimize 1− u1− u2− u3− u4− u5− u6− u7 subject to
u1═ 1− aFW1;1

� �
u2═ 1− aApp1;2

� �
═ 1−aApp2;2
� �

u3═ 1− aApp1;3
� �

═ 1− aSrv3;3
� �

u4═ 1− aSrv1;4
� �

═ 1−aApp2;4
� �

u5═ 1− aSrv1;5
� �

═ 1−aSrv3;5
� �

u6═ 1− aApp2;6
� �

═ 1− aSrv2;6
� �

═ 1− aSrv3;6
� �

u7═ 1− aSrv2;7
� �

═ 1−aSrv3;7
� �

1− aFW1;1≥1−αFW1′ ═ 0:001
1− aApp1;2
� �þ 1−aApp1;3

� �
≥1−αApp1′ ═ 0:01

1− aApp2;2
� �þ 1− aApp2;4

� �þ 1− aApp2;6
� �

≥1−αApp2′ ═ 0:005

1− aSrv1;4
� �þ 1− aSrv1;5

� �
≥1−αSrv1′═ 0:001

1− aSrv2;6
� �þ 1− aSrv2;7

� �
≥1−αSrv2′ ═ 0:001

1− aSrv3;3
� �þ 1− aSrv3;5

� �þ 1− aSrv3;6
� �þ 1− aSrv3;7

� �
≥ 1−αSrv3′ ═ 0:01

aFW1;1; aApp1;2; aApp1;3; aApp2;2; aApp2;4; aApp2;6; aSrv1;4;
aSrv1;5; aSrv2;6; aSrv2;7; aSrv3;3; aSrv3;5; aSrv3;6; aSrv3;7 ≥ 0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

which gives a lower bound for the availability of Service1 of 0.984. Similarly, we can determine
αService2═ 0.972. From the IT manager’s point of view, the results of this example suggests that there
could be a certain scheduling of the unavailability of the outsourced components Service1 depends
on (in a given time frame), which would result in an availability level of 98.4% for Service1,
without the outsourcer having violated any of the availability SLAs agreed with the IT manager for
the outsourced components. Figure 4 shows one possible scheduling for the unavailability of the
components on which Service1 depends on, resulting in Service1 having an availability of
αService1 (0.984).
4. OPTIMISATION OF OUTSOURCED SERVICES

In the outsourcing scenario that we are considering in this paper, we have seen that in order to fully
benefit from this kind of sourcing contract the customer needs to select the quality level of the
different available attributes (including availability) for the different building blocks that the
Figure 4. One possible scheduling for the failure of FW1, App1, App2, Srv1, Srv2 and Srv3
resulting in Service1 having an availability of 0.984. System components are on the vertical axis

and the components unavailability fraction of time (∈ [0, 1]) is on the horizontal axis
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contract provides in such a way that the delivered service has the expected quality and that the cost
is minimal.
In the previous section we have seen that determining the minimal availability level of a complex system

is a non‐trivial problem, which can be solved by reducing it to an optimisation problem. A relevant
application of this result is the minimisation of the cost for outsourced subcomponents. Given that
outsourcing has a cost that may (also) depend on the minimal availability guaranteed for the outsourced
component, a manager needs to minimise the outsourcing cost while guaranteeing that the services
provided by the system meet—among other non‐functional requirements—the target availability.
The situation is the reverse from the one in the previous section: instead of calculating the service

minimal availability given the minimal availability of the various system components, one wishes to
calculate what is the least expensive combination of components given the target minimal availability
of the services. Thus availability level optimisation consists in determining the assignment of an
availability level to the components of the system for which it is possible to chooseamong different
availability levels, so that

1. a minimal aggregated availability level is ensured for the services provided by the system;
2. the cost of the assignment is minimal.

To this end we distinguish among three types of nodes in an AND/OR dependency graph: target
availability nodes, variable availability nodes and given availability nodes. More formally, given an
AND/OR dependency graph 〈N,E〉, N═NT ∪ NV ∪ NG, where NT, NV and NG are the pairwise disjoint
sets of target, variable and given availability nodes.
Target availability nodes are the nodes modelling the services provided by the system. The target

expresses the minimal availability level which the system is or should be able to guarantee regarding a
given functionality (service). Typically, we define a target availability level on the service nodes of the
AND/OR dependency graph, whenever there is an SLA (be it company internal or not) which imposes
a certain level of availability for them.

Definition 4 (Target availability level). Given an AND/OR dependency graph 〈N,E〉, and NT ⊂ N
the set of target availability nodes, the target availability level of a node is a mapping target
availability :NT → [0, 1].

Running example: Part 4. Our example system provides two main functionalities, described in the
AND/OR dependency graph by the Service1 and Service2 nodes. The functionality described by
Service1 is more mission‐critical than the one described by Service2, and an SLA set on the system
ensures a minimal availability level of 0.99 for Service1 and of 0.983 for Service2.
Accordingly, target availability(Service1)═ 0.99 and target availability(Service2)═ 0.983.

Variable availability nodesmodel the situation inwhich it is possible to choose the availability level of a
component among different options (e.g. gold, silver and bronze) with different associated price. Variable
availability nodesare the components outsourced under the contract scenario assumed in this paper.
We model the domain of a variable availability level by means of a set of availability options.

Definition 5 (Availability option). Let 〈N,E〉 be an AND/OR dependency graph, NV a set of variable
availability nodes and N ′

V the set of the internals of the nodes in NV. An availability option for NV is a
function aa : N ′

V → 0; 1½ �. We call O the set of all the availability options.
According to the assumed scenario, IT managers can select the value of a number of quality

attributes from a list defined in the contract. Examples of such quality parameters include incident
response time, availability of the support (e.g. 24/7 or 8/5), data backup rates and availability.
The options available to an IT manager that has to choose the value of quality parameters for a

certain building block are in principle as big as the combinations of all possible parameter values (e.g.
an option could be choosing an UNIX server with incident response time within 4 hours, support
available 24/7, daily data backup and 0.995 availability). With availability options, we are only
considering the combination of availability levels for components. To enumerate the availability
options for a single component, the IT manager must first select the other quality parameters. We
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believe that other optimisation techniques may be used for the selection of the other quality
parameters, similarly to what we are about to present in this section.
The outsourcing contract includes a price catalogue associated with each building block. The price

catalogue contains the price associated with different quality parameter values. We assume that the
cost (for the customer) associated with a certain availability option can be extracted from the price
catalogue by summing the price of all the selected quality parameters (including the price of the
availability level). Owing to economies of scale, the outsourcing company may also apply graduated
unit prices if the number of purchased items exceeds a certain value. The cost of availability options
should take this into account. (For those who are familiar with optimisation problems: this introduces
a form of non‐monotonicity in the outsourcing offers, where outsourcing more services could be
potentially less expensive than outsourcing a smaller number of services. This non‐monotonic aspect
of the problem makes it more difficult to find the optimal solution.)
Based on these considerations, we define the cost of an availability option as a function that maps

the availability option to the domain of real numbers (i.e. money). The definition is kept general to
allow the implementation of (more) complex pricing schemes.

Definition 6 (Availability option cost). Let 〈N,E〉 be an AND/OR dependency graph, NV a set of
variable availability nodes, N ′

V the set of the internals of the nodes in NV and O the set of possible
availability options for NV. The cost of the availability option is a function cost : O→Rþ.

Running example: Part 5. The contract between the outsourcing company and the customer defines
different availability level options for the management of Windows servers and UNIX servers. Table 1
summarises the associated price catalogue. In our example Srv1, Srv2 and Srv3 are Windows
servers with variable availability, and both Srv4 and Srv5 are UNIX servers with variable
availability. The set of variable availability nodes is NV ═ {Srv1, Srv2, Srv3, Srv4, Srv5}. According to
the price catalogue, there are number of availability levels at the power of number
of variable availability nodes (35═ 243) possible combinations for the minimal
availability level of the elements in N ′

V , i.e. |O|═ 243. One of these combinations is o1, where
o1(Srv1′)═ o1(Srv2′)═ o1(Srv3′)═ o1(Srv4′)═ o1(Srv5′)═ 0.99. The cost function is extracted from
Table 1 (in this simplified example, availability is the only quality parameter to choose), and
cost(o1)═ (3 ⋅ 1000 + 2 ⋅ 900)═ 4800.

To guarantee that condition 1 of our problem is met, we extend the definition of minimal
aggregated availability to be applied also to nodes with a variable availability. According to this,
given a node t ∈NT with target availability, we call minimal availability(t, o) the minimal aggregated
availability of t when for all nodes n with variable availability αn′ is determined by o.
Finally, a node with given availability models components for which the minimal availability is

known and not variable.

Definition 7 (Given availability level). Given an AND/OR dependency graph 〈N,E〉, and NG ⊂N the
set of target availability nodes, the given availability level of a node is a mapping given availability :
NT → [0, 1].

Running example: Part 6. In our example the components whose minimal availability is given are
FW1, App1, App2 and App3. Therefore, according to Figure 3 we have that given availability
Table 1. An example of availability level options price catalogue

Availability level Minimal quantity Windows price UNIX price

0.99 1 server 1000 euro 900 euro
0.99 6 servers 900 euro 800 euro
0.995 1 server 1300 euro 1200 euro
0.995 11 servers 1200 euro 1100 euro
0.998 1 server 1500 euro 1400 euro
0.998 6 servers 1400 euro 1300 euro
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(FW1)═ 0.999, given availability(App1)═ 0.99, given availability(App2)═ 0.99 and given availabil-
ity(App3)═ 0.993.

At the beginning of this section we have defined our problem as determining the assignment of an
availability level to each outsourced component of the system so that the services offered by the
system meet a certain target availability while minimising the cost. Considering the three types of
node that we have just defined, we can reformulate the problem as: given an IT system made of target
availability nodes, given availability nodes and variable availability nodes and certain availability
levels required from the services offered by the system, choose an availability option for variable
availability nodes such that the resulting availability of target availability nodes matches the required
level and the outsourcing cost is minimum.
More formally, let 〈N,E〉 be an AND/OR dependency graph, N ¼ NT [: NV [: NG , a function

target availability on N ′
T, a function given availability on N ′

G, a set O of availability options for NV and
a function minimal availability for NT × O. Find the option o ∈ O with minimal cost such that ∀t ∈ NT,
minimal availability(t, o)≥ target availability(t).
Based on this formal description we formulate in (8) a linear programming problem with variables

in a finite domain. The solution to this problem is the availability option that minimises the
outsourcing cost.

minimize cost oð Þ
subject to:
o ∈O
minimal availability t1; oð Þ≥ target availability t1ð Þ
⋮
minimal availability tP; oð Þ≥ target availability tPð Þ

8>>>>>><
>>>>>>:

Running example: Part 7. Recall that the nodes with variable availability are Srv1, Srv2, Srv3,
Srv4 and Srv5. The set of availability options O is made of 243 elements. We want to ensure that
the lower bound of the monthly availability is 0.99 for Service1 and 0.983 for Service2.
Consequently, the optimisation problem is as follows:

minimize cost oð Þ
subject to:
o ∈O
minimal availability Service1; oð Þ≥ 0:99
minimal availability Service2; oð Þ≥ 0:983

8>>>><
>>>>:

(8)

which gives us an (optimal) solution with cost 6300 euro when α′Srv1═ 0:998 , αSrv2═ 0.99,
αSrv3═ 0.998, αSrv4═ 0.99 and αSrv5═ 0.998.

5. IMPLEMENTATION AND BENCHMARKS

5.1. Implementation

We have implemented a prototype of A2
THOS to run our lab experiments and to support case studies.

The prototype is written in Java and prolog in about 10 000 lines of code. We chose to use the
ECLiPSe [28] prolog platform since it provides a flexible yet powerful set of constraint solvers which
we need to deal with the linear programming problems of A2

THOS. The available solvers include fd, a
solver for finite domain integer problems, ic, a solver for hybrid integer/real‐interval problems and
eplex, an interface to an (external) simplex solver library.
Figure 5 shows the software architecture of our prototype. It consists of four interacting

components: the GUI front‐end, the driver, the analysis and the optimisation engines. The GUI front‐
end manages the interaction with the final user. It is implemented as a standalone Java application and
it allows the user to quickly create the AND/OR dependency graph by dragging and dropping nodes
and edges, to annotate each node with its availability figure(s) or availability level options and to
viewthe analysis and optimisation results. The analysis engine solves the availability analysis

(8)
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problem, described in Section 3. It is implemented in prolog by using the eplex (simplex algorithm)
solver of the ECLiPSe platform. The optimisation engine solves the availability optimisation problem,
which we describe in Section 4. It is also implemented in prolog by using the fd solver of the ECLiPSe
platform. Finally, the driver is written in Java and manages the interaction of the Java components
with the prolog ones. It uses the JavaECLiPSe interface to build a prolog optimisation problem from
the AND/OR dependency graph and the other availability‐related information inserted by the user. It
then translates the results given by the engines in a format that can be presented to the user by the Java
GUI front‐end.
5.2. Benchmarks

To be of practical use, our prototype needs to deliver a solution to the linear programming problems in
a reasonable time. Unfortunately, the simplex algorithm has a worst‐case exponential complexity [29],
and solving by brute‐force linear programming problems with variables in a finite domain has an
exponential complexity in the number of variables and their domain size. This means that the
implementation does not scale, and therefore we have to benchmark whether it can tackle the size of a
real‐world IT system. In the sequel we show that it does so; nevertheless we want to stress that our
implementation is just a proof of concept and its speed can no doubt be improved: our goal is to
demonstrate how this can be done, and not to provide a fast implementation.
We benchmarked the performance of our prototype by running it on inputs with growing size. We

run our test on a machine with an Intel Pentium 4 CPU running at 3.6GHz and with 2GB RAM.
First, we benchmarked the availability analysis. Here, the complexity of the simplex algorithm is

determined by the number of variables and constraints of the linear programming problem it solves.
Therefore, we generate inputs for the analysis engine byincreasing the number of nodes and by
adjusting the node types and edges to obtain a growing number of constraints (and associated
variables) for the linear programming problem of (7). We set the maximum number of nodes for our
tests to 250 and the maximum number of constraints to 600. In our experience these numbers
correspond to a fairly large IT system. To increase randomness we also repeat several times (five) the
test for a certain number of nodes and constraints, and we then calculate the average computation
time. The results are shown in Table 2. Our tests indicate that given a fixed number of constraints the
computational time is basically linear in the number of nodes, and that our prototype is able to handle
an AND/OR dependency graph of 250 nodes and 600 constraints on average in less than a minute.
Secondly, we benchmarked the optimisation algorithm. Our prototype implementation works by

exhaustively searching the space of all available options and choosing the best one. The algorithm is
thus optimal (it finds the best solution, every time), but its complexity is exponential in the number of
variables (which in this case corresponds to the number of nodes with variable availability). Again, the
Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2012; 22: 104–130
DOI: 10.1002/nem



Table 2. Performance of the simplex algorithm for availability analysis

Nodes Constraints Time (s)

15 10 0.00001
15 20 0.002
60 10 0.001
60 20 0.005
60 60 0.02
120 10 0.004
120 20 0.01
120 100 0.09
120 150 0.22
120 250 0.8
120 300 1.3
120 600 20.2
250 10 0.009
250 20 0.011
250 100 0.22
250 150 0.5
250 250 1.6
250 300 2.6
250 600 41.1
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fact that the algorithm is exponential means that we cannot expect it to scale up indefinitely, and it is
therefore important to assess via benchmarks how big a problem it is able to tackle.
We carried out these benchmarks as follows. We create a simple program which takes as input the

desired number of nodes with availability level options, the average number and the average size of
the dependency sets and generates a random AND/OR dependency graph with random availability
level options which match the given parameters. We set three possible availability levels for nodes
with variable availability, since that is the most common configuration in outsourcing scenarios (gold,
silver and bronze). We then solve the problem with our optimisation engine and note the execution
time. We use an increasing number of nodes with variable availability (up to 50) and we specify
different average number and average sizes of the dependency sets. We repeat several times (five) the
test for each configuration in order to increase randomness.
Our results indicate that the computational time is mostly influenced by the number of independent

nodes. By independent node here we mean a node that appears in only one element of a dependency
set. We report in Table 3 the results of our tests with 50 nodes. As the number of independent nodes
increases, the computational time increases as well. We are able to solve a problem with 50 nodes,
among which 25 are independent in 1 1

2 hours. However, the trend is—as expected—exponential, and
with 30 independent nodes we exceed 6 hours of computation. This is due to the fact that the solver
has to explore all the possible combinations of values for the variables associated to independent
nodes, while the domain of the other variables is limited by the problem constraints.
Our benchmark indicates that the crucial factor influencing the computation time is the number of

independent nodes (outsourced components) which contribute independently to the system
availability (AND dependency), and that the algorithm as itis now is always able to handle situations
with up to 25 such nodes. In practice, this number is sufficient to model a single medium/large IT
system, as we will show in the next section. It is worth noting that one can break a huge IT system into
independent subsystems and apply the algorithm to them one by one. In this light, 25 outsourced
components represent a limit which is basically never exceeded (in our industrial test case, which was
carried out at a multinational company, we had a maximum of six independent nodes).
In the unlikely case that one would need to apply the algorithm to too large a system (e.g. exceeding

the 40 AND independent), one could still refer to the optimisation problem we have reported in
Section 4, but then use a non‐exhaustive algorithm to find a solution to it. Non‐exhaustive algorithms
(e.g. those based on local search [30]) have the disadvantage that they do not guarantee finding the
optimal solution (they usually find a local optimum, which is not guaranteed to be a global optimum
as well), but could probably easily scale to hundreds of independent nodes.
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Table 3. Performance of the availability optimisation
algorithm with 50 variable availability nodes

Independent nodes Time (s)

10 ≤ 0.01
15 0.01
20 197.20
25 5418.50
30 ≥ 21600.00
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6. METHODOLOGY: PRACTICAL USE OF A2
THOS

In this section we present a case study we carried out on the IT infrastructure of a large multinational
company. With this case study we want to address three important questions regarding A2

THOS:

1. Does the approach scale up to conditions of practical utility?
2. Can A2

THOS be (economically) applied to a practical case; i.e. does it require information not
available in practice?

3. How useful is the information provided by A2
THOS for its intended users?

Let us now present the context in which we carried out the case study. The multinational company
(from now on we call it the Company) has a global presence in over 50 countries and counts between
100 000 and 200 000 employees. Our case study was conducted at the site of IT facilities for the
Company’s European branch.
The Company IT department supports the business of hundreds of other departments by offering

thousands of applications accessed by approximately 100 000 employee workstations and by many
hundreds of business partners. IT services are planned, designed,developed and managed by the IT
infrastructure department located at the Company’s headquarters. These services (e.g. e‐mail or ERP
systems) are part of the IT infrastructure which is used by all the different Company’s branches all
over Europe.
For efficiency reasons, as in most other large organisations, business units exchange services by

means of an ‘enterprise internal market’. One business unit pays another one for the use of a given
service and the service provider unit finances its activities by means of these funds. Within this
‘internal market’, the quality of the provided services is regulated by means of SLAs. Among the
other QoS parameters, SLAs include the minimal ensured availability of the offered services.
IT services are designed internally by the IT department and then partly outsourced for

implementation and management to another company. We call this company the Outsourcer. The
Outsourcer is a market‐leading international IT services provider. The outsourced tasks include
application and server management, help‐desk and problem solving. Although the servers running the
IT services are owned by the Company and physically kept within its data centres, the Outsourcer
manages the OS and the software running on them. The Outsourcer has signed contracts with the
Company which include SLAs regarding both the security of the information managed by the
outsourcing company and the availability of the outsourced services.
The Company and the Outsourcer have established a global contract regulating the application and

server management service provisioning. The contract is made of several building blocks, e.g. UNIX
server management, Windows server management or Oracle database management. Every time the IT
department of the Company needs to deploy a new IT service, a new request is issued to the
Outsourcer to provide the building blocks needed by the service. The QoS parameters and their
possible values foreach building block are also predefined in the contract. Regarding availability, for
each building block the Company can choose among different guaranteed minimal availability levels.
The price for the provisioning of each building block with specific QoS parameters is part of the price
catalogue of the Outsourcer.
One of the problems the IT infrastructure managers of the Company have to deal with is how to

determine the minimal availability level of new IT services. In fact, this availability level is meant to
be used to set up the Company internal SLAs between the service provider (the IT department) and the
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service users (the other departments of the Company). It is important that the IT infrastructure
manager is as precise as possible in determining the minimal availability level to be agreed with the
internal users. In fact, too low a value could prevent agreement being reached, as the service users
may not be willing to pay for a service which does not fit their needs in terms of availability. On the
other hand, too high a value may impact the budget of the IT department, as for each time that the
SLA is not respected the department has to pay a penalty. Ultimately, if the SLAs are violated too
many times the service users may decide to terminate the service delivery contract before the IT
department has compensated the initial service establishment costs. The reverse problem faced by the
IT infrastructure manager is: if the service user has a specific requirement for the availability of the
service, which QoS levels should be agreed with the Outsourcer for the outsourced building blocks
such that the resulting internal service availability level meets the user requirements?
As we said, traditional approaches to the availability analysis are not quite applicable to this

context. In fact, traditional availability analysis of complex systems requires the analyst to know for
each system component the mean time to failure (MTTF) and mean time to recovery (MTBR)
parameters. The personnel of the IT department can measure (or estimate) these parameters for the
portion of the IT system which is under its direct control. However, it cannot do this for the parts (a
large majority) that are managed by the Outsourcer. The only information the IT manager can rely on
for outsourced components is the guaranteed minimal availability level agreed with the Outsourcer.
Therefore, the IT infrastructure manager currently estimates the service availability levels based on
simple heuristics (e.g. if he needs 0.99 availability for the service, he will choose at least 0.99
availability for each building block).
In our case study we addressed this problem using the A2

THOS framework. We structured the case
study in two sub‐cases. In the first sub‐case we carried out the availability analysis of an IT system
which has already been in place for some years. In the second sub‐case we carried out both the
availability analysis and the optimisation for a new IT system which is about to be deployed. Our
results have been used by the IT manager both to set the internal SLAs for the new service and to
choose the proper availability level of the building blocks of the system.
In the first sub‐case, the IT system we analysed is the authorisation and authentication system of the

Company, called Oxygen. To carry out the availability analysis we first needed to represent Oxygen as
an AND/OR dependency graph. We extracted the information from the network diagram, the
functional specification document, and the security architecture and design document. The procedure
we followed is very similar to the one we described in our previous publication [31]. We used our tool
to represent the AND/OR dependency graph of the system and to annotate nodes with their minimal
availability level. The resulting graph consists of 65 nodes and 112 edges. Among the nodes are 13 IT
services, 32 applications, 14 servers equally distributedbetween two data centres and connected
simultaneously to two different network segments by means of two different firewalls.
The second step of this sub‐case is to determine the minimal monthly availability for the nodes in

the graph. We extracted this information from the SLA documentation attached to the standard
contract signed between the Company and the Outsourcer. Finally, we extracted the current minimal
monthly availability of the IT services supported by Oxygen from the Company internal SLAs
documentation.
We used the analysis engine of our tool to carry out the availability analysis: the whole algorithm

completed in less than 1 minute for Oxygen.
Table 4 reports the results of our analysis. We report in the first column the (anonymised) service,

in the second column the minimal monthly availability level of each service calculated with our tool,
and in the third column the existing minimal monthly availability level reported in the internal SLAs.
Compared to the estimates made by the Company IT manager, we observe that the internal SLA
specifies for Service1, Service4, Service5 and Service10 a minimal availability level which could not
be guaranteed even in the case when the Outsourcer respects all its SLAs with the Company. This is a
possible risk for the IT manager for the reasons we discussed above. On the other hand, we also see
that the minimal monthly availability level we calculated for Service6, Service7, Service8, Service10,
Service11, Service12 and Service13 is higher than the one specified in SLAs. This is also a criticality
for the IT manager, as he is spending more money than needed to guarantee the availability level of
the outsourced Oxygen building blocks.
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Table 4. Results of the availability analysis on Oxygen

Service Calculated α Existing α

Service1 0.96 0.99
Service2 0.98 0.98
Service3 0.98 0.98
Service4 0.96 0.98
Service5 0.97 0.99
Service6 0.99 0.98
Service7 0.99 0.98
Service8 0.99 0.98
Service9 0.99 0.98
Service10 0.96 0.98
Service11 0.99 0.98
Service12 0.99 0.98
Service13 0.99 0.98
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The system we analysed in the second sub‐case is called Hydrogen and provides similar
functionalities to Oxygen, but for the Company external contractors. Hydrogen was designed after
Oxygen and is now in the final development phase. In this phase, the internal SLAs with the
Hydrogen service users are already set, and the Company IT manager has to issue a request to the
Outsourcer for the building blocks to deploy Hydrogen. He also has to specify in the request the
desired availability level for each building block. Therefore, in this second phase of our case study we
use the availability level optimisation of the A2

THOS framework.
The first step of this sub‐case is the same as in the previous case: building the AND/OR dependency

graph. To carry out this step we follow the same procedure we adopted for Oxygen (and described in
more detail in our previous publication [31]). The resulting graph is made of 26 nodes and 33 edges.
Secondly, we annotated the nodes with given availability. These nodes represent the data centres and
the network segments. We acquired this information from the IT department personnel, which keep
track of the monthly availability performances of their main IT infrastructure components. We set the
given availability as the lowest monthly availability value observed in the monitoring data. Finally,
we extracted the availability options for the eight variable availability nodes (servers). We obtained
the required information from the building block description documents and the price catalogue
provided by the Outsourcer to the Company. According to these documents, the Outsourcer offers
three availability levels for the six Unix servers (0.995, 0.998 and 0.999) and two levels for the two
Windows ones (0.995, 0.998). The resulting number of availability options is 733.
We used our tool to obtain the optimal configuration of availability levels for the servers of

Hydrogen: the whole algorithm completed in less than 1 minute for Hydrogen. If the Company IT
managers adopted the same strategy chosen for Oxygen (i.e. to choose the lowest availability level for
all the outsourced components), they would have spent as little as possible, but two services of
Hydrogen would have had a minimal availability lower than the one set in the internal SLAs. The
optimal combination computed with our tool ensures that the minimal availability is compliant with
the SLAs for all the services, with a cost which is only 2% greater. We also considered the effect of
adding a further availability level (0.990) to the price catalogue of the outsourced components,
extrapolating the associated price from the existing ones. The resulting optimal allocation in this case
would be ~30% lower. The IT managers will take their decisions based on these results. In more
detail, they will choose the optimal allocation we computed for Hydrogen. The Company may also
start a renegotiation of the contract with the Outsourcer to discuss the introduction of a new
availability level of 0.990 for servers. Based on interviews with personnel of the Company, we know
the Company expects that the Outsourcer may agree on introducing a lower availability level for a
lower price only if providing a lower availability would reduce its (internal) service delivery costs. In
other words, if by decreasing the availability level the Outsourcer has an economic advantage, i.e.
because of smaller maintenance costs, it will be able to agree on the introduction of the new
availability level. On the other hand, in case there would be no (or too little) advantage, the Outsourcer
would never agree on such a renegotiation.
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Let us now address the questions we listed at the beginning of this section.
Does the approach scale up to conditions of practical utility? In this case study we applied A2

THOS
to two distributed systems which are used by a large multinational company. The size of these systems
is comparable to the size of the other systems the Company is using. The first scalability issue regards
the time needed to build an AND/OR dependency graph for these systems. As we already argued
above, the information required is available, but building an accurate AND/OR dependency graph for
an IT manager can be time consuming. As the size of the system grows, the difficulty of choosing a
(close to) optimal combination of availability levels for outsourced components grows more rapidly
than the difficulty of building the graph. This suggests that it may be worth using A2

THOS for large
systems, whose optimum component availability level combination is hard to find. Secondly, the case
study confirms that our prototype can tackle large IT systems. We motivate this statement by the
following two observations. First, the IT manager(s) of the Company need to decide about the
availability of outsourced system components only when a new system is introduced in the IT
infrastructure. In other words, the unit for the decision of the IT manager is limited to one system at a
time. This is not surprising, if we consider that an organisation’s IT infrastructure is incrementally built
following the needs of the organisations: every time a new system is added to the infrastructure, only the
availability issues of that system are taken into account. Secondly, the size (in terms of number of
components) of the IT systems we analysed in our case study is comparable to the size of the other
systems in the Company’s IT infrastructure. We expect to find the same system size in other (large)
organisations as well. According to these two observations, we can arguethat the performances of our
prototype is sufficient in many practical situations, even with an IT system up to three times larger than
the ones we considered.
Can A2

THOS be (economically) applied to a practical case? The fact that we were able to
successfully carry out the case study presented above supports a positive answer to this question.
However, it only shows that (a) we can use the method, and (b) that there exists one context in
whichthe problem can be tackled by adopting our approach and in which the information required to
adopt it was available.
Regarding (a), our application has not revealed obstacles to usage by other people, and further

evidence would be needed to substantiate this claim positively.
Regarding (b), we have already discussed above the scalability of our approach for large

organisations. We also believe that the context and problem we address in this paper are common to
many medium/large‐scale organisations. The problem is thus if the information required is available
at those organisations. The information required to use A2

THOS can be summarised in (1) the
components of the IT system under analysis and their functional dependencies, (2) the minimal
availabilitylevel of each system component and (3) the different availability levels which can be
chosen for outsourced components and the associated price. We learnt from this case study that
most of the information regarding (1) can be extracted from the system functional and design
documentation. The lacking parts can be easily integrated by interviewing the technical personnel
who designed or implemented the system. Information regarding (2) is normally present in the SLA
documentation for outsourced components. For components which are managed internally, this
information can be extracted by measuring the component’s performance over time (as was done by
the Company in this case). It is also possible to calculate availability levels analytically, by using
standard reliability techniques, as we mentioned in Section 2. Information regarding (3) is only
available if the IT service provider allows its customers to choose among different availability options.
Although not all outsourcing contracts with IT service providers may be configured in such a way, we
learnt during our case study that the Outsourcer is applying this strategy to all of its customers. Therefore
there are indications that say that A2

THOS is also applicable (at least) to these customers.
How useful is the information provided by A2

THOS for its intended users? The feedback we
received from the IT management of the Company suggests a positive answer to this question. In
particular, they found the information useful for: (1) making informed decisions about the planning of
the availability of their IT services; (2) improving the quality of the IT services provided to the
business units of the Company; and (3) justifying to the upper management the outsourcing costs in a
more precise way. This provides support for our claim of potential usefulness of A2

THOS for its
intended contexts of application.
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7. CONCLUDING REMARKS

In this paper we present A2
THOS, a framework for the analysis and optimisation of the availability of

mixed‐sourced IT services. The framework consists of (1) a modelling technique to represent partially
outsourced IT systems, their components and the services they provide, based on AND/OR
dependency graphs, (2) a procedure to calculate (a lower bound of) the system availability given the
(lower bounds of) components availability, and (3) a procedure to select the optimum availability
level for outsourced components in order to guarantee a desired target availability level for the service
(s) and to minimise cost.
We analyse a scenario in which a contract between customer and service provider is made of a

number of ‘standard’ building blocks arranged in a service catalogue for which the customer can
choose the desired quality level. Based on the principles of economic game theory, assuming that the
service provider acts rationally in its own interest, the customer has maximum economic advantage
when making a cost‐optimal choice of quality levels.
Among the different quality levels, the optimisation of availability levels is a non‐trivial problem

which can be tackled effectively using our modelling framework. Our benchmarks show that—even
though the underlying problem is exponential—A2

THOS cantackle IT systems which are three times
larger than the ones we could find at a multinational company.
APPENDIX A: PROOF OF THEOREM 1
Assuming without loss in generality that DEPSm═ {D1,…,Dk} and Di ═ di;1;…; di;li

� �
we see that

χ m; tð Þ═
Y

i∈ 1 :: k½ �
maxj∈ 1 :: li½ �χ di;j; t

� �� �
(9)

and calling χ Di; tð Þ═maxj∈ 1 :: li½ �χ di;j; t
� �

we obtain

av mð Þ═ 1
t1− t0

Z t1

t0

χ m; tð Þdt (10)

═
1

t1− t0

Y
i∈ 1:: k½ �

χ Di; tð Þdt (11)

Let τ(a)═ {t ∈ [t0, t1]|χ(a, t)═ 1} be the subset of the interval [t0, t1] in which a functions correctly,
since χ :N× [t0, t1] × {0, 1} and χ is measurable (for instance, in our context we can assume that,
once we fix a node a, the graph of χ(a, t) switches from 0 to 1 a finite number of times) we have that

Z t1

t0

χ a; tð Þ⋅χ b; tð Þdt ═
Z
τ að Þ

χ b; tð Þdt ═
Z
τ að Þ ∩ τ bð Þ

1dt

Based on this, (10) becomes

av mð Þ═ 1
t1− t0

Z
τ D1ð Þ ∩ … ∩ τ Dkð Þ

1dt (12)
By set theory, if τ is a set and A,B⊆ τ, we have that A ∩ B═ A
―τ∪ B―τ τ―

, where A
―τ is the complement

of A w.r.t. τ. Then, let τ ═ [t0, t1], we have that

av mð Þ═ 1
t1− t0

Z
τ D1ð Þ―τ

∪ … ∪τ Dkð Þ―τ
―τ 1dt (13)

Recall that, if X⊆ τ and both are measurable,
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Z
X
―τ

f dt═
Z
τ

f dt −
Z
X

f dt

Thus:

av mð Þ═ 1
t1− t0

Z
τ

1dt −
Z
τ D1ð Þ―τ

∪ … ∪ τ Dkð Þ―τ
1dt

" #
(14)

Recall that if A and B are measurable and f with positive values, we have that ∫A∪B f dt ≤ ∫A f dt þ
∫B f dt, where the equality holds if A and B have empty intersection. Therefore we have that

av mð Þ≥ 1−
1

t1− t0

Z
τ D1ð Þ―τ

1dt þ…þ
Z
τ Dkð Þ―τ

1dt

" #
(15)

where the inequality becomes an equality if the Dis are pairwise disjoint. Intuitively,Z
τ Dið Þ―τ

1dt

is the unavailability caused by the nodes in Di in the time interval τ═ [t0, t1]. In fact, let
Di ═ di;1;…; di;li

� �
, we have thatZ

τ Dið Þ―τ
1dt ═

Z
τ di;1ð Þ∪ … ∪ τ di;lið Þ―τ 1dt (16)

By set theory, if A,B⊆ τ we have that A ∪ B
―τ ═ A

―τ ∩B―τ; thenZ
τ Dið Þ―τ

1dt ═
Z
τ di;1ð Þ―τ

∩ … ∩ τ di;lið Þ―τ 1dt (17)

Recall that, if A and B are measurable,Z
A ∩ B

1dt ≤min
Z
A
1dt;

Z
B
1dt

� �

Thus:

Z
τ Dið Þ―τ

1dt ≤minj∈ 1::li½ � t1− t0ð Þ−
Z
τ di; jð Þ

1dt

 !
(18)

We can substitute in (18) the inequality with an equality as we are interested in the upper bound of
the unavailability caused by the elements in Di. Substituting (18) into (15) we obtain

av mð Þ ≥ 1

−mini∈ 1 .. l1½ � 1−
1

t1− t0

Z
τ d1;ið Þ

1dt

 !
−…

−mini∈ 1 .. lk½ � 1−
1

t1− t0

Z
τ dk;ið Þ

1dt

 ! (19)

Let us now distinguish two cases: (a) Dis are pairwise disjoint, i.e. ∀ i, j Di ∩Dj═ ø, and (b) they are
not pairwise disjoint. In (a) the inequality sign in (15) becomes an equalitysign. Therefore (15)
becomes

av mð Þ═ 1−
1

t1− t0

Z
τ D1ð Þ―τ

1dt þ…þ
Z
τ Dkð Þ―τ

1dt

" #
(20)
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and we can use (19) to determine av(m). Since all Dis are pairwise disjoint, if di, j═ n′, then
1

t1− t0
∫τ di; jð Þ dt ═

1
t1− t0

∫
t1

t0
χ n′; tð Þdt. Therefore, if we set ∀ n′ ∈N′ av n′ð Þ═ αn′, we determine αm from

(9) by substituting
1

t1− t0
∫τ di; jð Þ dt with αn′ when appropriate.

In fact, in this case the various Dis are independent from each other and to calculate the
minimal availability (given the constraints on the availability of the internal nodes) we can restrict
the search to those schedulings in which the various Dis are unavailable in non‐overlapping
time frames and all the elements of any Di are unavailable at exactly the same time. For
example, consider the case of Figure 2(b). DEPSm ═ m′f g; n′

1; n
′
2

� �� �
and, according to (19),

αm ═ 1− 1−αmð Þ−min 1−αn1ð Þ; 1−αn2ð Þð Þ. The availability ofm reaches αmwhen (1)m′ is unavailable
for 1−am′ but not at the same time for n1 and n2, and (2) n1 and n2 are unavailable at the same
time for min 1−αn1ð Þ; 1−αn2ð Þð Þ. This also shows that there exists a state function forwhich, when
avn′ ══ αn′ , then av(m)═ αm.

In the general case (b), the elements Di of DEPSm are not pairwise disjoint, i.e. ∃ i, j |Di ∩ Dj≠ ø. By
using (19) in this case we would obtain a value of αm which is not minimal. To determine the
availability lower bound αm we then set up a linear programming problem. For the sake of
presentation, we call ai, j the (unknown) quantity

ai; j ═
1

t1− t0

Z
τdi; j

1dt

and ui the (unknown) quantity

ui ═ 1−
1

t1− t0

Z
τ di;1ð Þ―τ

∩ … ∩ τ di;lið Þ―τ 1dt

By substituting ai, j and ui in (15) where possible, we obtain the objective function we need to
minimise to find the lower bound we aim at. The first k constraints are derived from (17) and ensure
that the nodes belonging to a certain Di can be unavailable all at the same time for ui.
Given the definition of dependency set, if we call D(n′)═ {di, j | di, j═ n′}), then we know that

av n′ð Þ═ 1
t1− t0

Z t1

t0

χ n′; tð Þdt

═ 1−
P

di; j ∈ D n′ð Þ 1−
1

t1− t0

Z
τ di; jð Þ

1dt
(21)

From (21) we derive a set of constraints which ensure that the lower bound of the availability
caused by each internal node n′ in all the elements of DEPSm is the known value αn′ .
As a result we get the following linear programming problem:

αm ═

minimize 1−u1−⋯− uk
subject to
u1 ═ 1− a1;1

� �
═⋯═ 1− a1;l1

� �
⋮
uk ═ 1− ak;1

� �
═⋯═ 1− ak;lk

� �
∀n ∈ N;

P
di; j ∈ Dn

1−ai;j≥1−αn′
a1;1;…a1;l1 ;…; ak;1;…; ak;lk ≥ 0

8>>>>>>>><
>>>>>>>>:

(22)

A solution to this problem can be found by using the simplex algorithm. Such a solution indicates
both the lower bound for the availability of m, i.e. the minimal value of (15). With this we then proved
our theorem.
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APPENDIX B: REPRESENTATION CAPABILITIES
In order to apply our approach to the real world one could wonder if the technique we adopt to
represent the complex system (AND/OR dependency graphs) is expressive enough. A very popular
and widely used approach to represent complex systems for reliability and availability analysis is
using RBDs. In this section we show that our representation is at least as expressive as an RBD.
An RBD is a graphic representation of the complex system where every component is represented

by a block (rectangle) and it is connected to other components, in series or parallel form. A serial
connection between two blocks (see Figure 6a) means that the system (composed by the two blocks)
is operational when both blocks are operational. A parallel connection (see Figure 6b) between two
blocks means that the system is operational when at least one of the two blocks is operational. The
whole system is then modelled as a combination of series and parallel blocks. A group of
interconnected components can be represented as a single macro‐component. In turn, macro‐
components can be connected to other components (e.g. see Figure 8) and grouped again. Hence, to
prove that our representation is as expressive as an RBD, we need to show how each one of the three
main operations on RBDs can be equally expressed as an AND/OR dependency graph.
If we consider the serial system of Figure 6(a), made of only two components, the corresponding

AND/OR dependency graph is given in Figure 7(a). To represent the system we use an AND node X,
which depends on nodes A and B. Similarly, the parallel system of Figure 6(b) is equivalent to the
AND/OR dependency graph in Figure 7(b), where the OR node X depends on nodes A and B.
Regarding the composition operation, in Figure 8 we show the parallel composition of two

components, where each of them is a serial composition of two sub‐components, in parallel with two
other sub‐components. Figure 9 shows the same system represented as an AND/OR dependency
graph. We model as an AND node X1 the serial composition of sub‐components A and B, and as an
OR node X2 the parallel composition of sub‐components C and D. Finally, we add an OR node X
which represents the parallel composition of the two above‐mentioned components. It is easy to see
Figure 6. RBD: (a) series; (b) parallel

Figure 8. RBD parallel composition

Figure 7. AND/OR dependency graph: (a) series; (b) parallel
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Figure 9. AND/OR dependency graph parallel composition

129A2
THOS
that we can model any combination of grouping and series/parallel compositions in the RBD, with a
combination of AND and OR nodes.
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